Date: 1998-03-16 # ISO TC 184/SC4/WG3 N730 ### Supersedes ISO TC 184/SC4/WG3 N718 ISO/WD 10303 - 226 Standard title: Industrial automation systems and integration - Series title: Product data representation and exchange - Part title: Part 226: Application Protocol: Ship Mechanical Systems #### **COPYRIGHT NOTICE:** This ISO document is a working draft and is copyright protected by ISO. While the reproduction of working drafts in any form for use by Participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO. Requests for permission to reproduce this document for the purposes of selling it should be addressed as shown below (via the ISO TC 184/SC4 Secretariat's member body) or to ISO's member body in the country of the requester. Copyright Manager, ANSI 11 West 42nd Street New York, New York 10036, USA phone: +1-212-642-4900 fax: +1-212-398-0023 Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be prosecuted. #### **ABSTRACT:** This document represents the Committee Draft for Comment version of ISO 10303 Part 226 that deals with ship mechanical systems data representation for the purpose of electronic data interchange. Ships mechanical systems, within the scope of this standard, include ship's propulsion systems, auxiliary systems and deck machinery systems, together with their components. Product data pertaining to all lifecycle phases of ship mechanical systems are in the scope of this standard. The lifecycle phases covered include specification, selection, installation, commissioning, operation, in-service inspection, maintenance and decommissioning. #### **KEYWORDS:** application protocol; ship equipment; ship machinery; ship mechanical systems; ship propulsion system; ship auxiliary systems; lifecycle; mechanical product. #### **COMMENTS TO READER:** This document has been reviewed and noted by the ISO TC 184/SC4 Quality Committee and SC4 Secretariat and has been determined to be ready for review by the international industry as the Committee Draft for Comment document. This is the third Working Draft of AP226 and contains all the major amendments due to the international industrial review of previous Working Draft as documented in report ISO TC184/SC4/WG3 N703 dated 13 January 1998. Project Leader:Dr Z BazariProject Editor:Dr Z BazariAddress:Lloyd's RegisterAddress:Lloyd's RegisterTechnical Investigation Dept.Technical Investigation Dept.29 Wellesley Road29 Wellesley Road Croydon CRO 2AJ, UK. Telephone: +44 181 681 4706 Telephone: +44 181 681 4706 Telephone: +44 181 681 4706 Telefacsimile:+44 181 681 4864Telefacsimile:+44 181 681 4864Electronic mail:Zabi.Bazari@lr.orgElectronic mail:Zabi.Bazari@lr.org | Co | ontent | | Page | |----|----------|-----------------------------|------| | 1 | Scope. | | 1 | | 2 | Norma | tive references | 3 | | 3 | Definit | tions and abbreviations | 5 | | | 3.1 Terr | ns defined in ISO 10303-1 | 5 | | | | ns defined in ISO 10303-31 | | | | | ns defined in ISO 10303-41 | | | | | ns defined in ISO 10303-42 | | | | | ns defined in ISO 10303-43 | | | | | ms defined in ISO Dis 14224 | | | | | ns defined in IEC 50(191) | | | | | er definitions | | | | 3.8.1 | acquisition code | 8 | | | 3.8.2 | activity | | | | 3.8.3 | aft | 8 | | | 3.8.4 | ambient conditions. | 8 | | | 3.8.5 | ambient fluid | 8 | | | 3.8.6 | anomaly | 8 | | | 3.8.7 | approve | 9 | | | 3.8.8 | assembly | | | | 3.8.9 | assess | 9 | | | 3.8.10 | - | | | | 3.8.11 | auxiliary system. | | | | 3.8.12 | | | | | 3.8.13 | | | | | 3.8.14 | | | | | 3.8.15 | ` ' ' | | | | 3.8.16 | | | | | 3.8.17 | \mathcal{E} | | | | 3.8.18 | | | | | 3.8.19 | Č | | | | 3.8.20 | | | | | 3.8.21 | classification | | | | 3.8.22 | • | | | | 3.8.23 | | | | | 3.8.24 | | | | | 3.8.25 | 1 | | | | 3.8.26 | • | | | | 3.8.27 | 1 | | | | 3.8.28 | A | | | | 3.8.29 | 1 | | | | 3.8.30 | | | | | 3.8.31 | condition monitoring. | | | 3.8.32 | configuration | | |--------|--|----| | 3.8.33 | connecting component | 10 | | 3.8.34 | connection | 10 | | 3.8.35 | connector | 10 | | 3.8.36 | connector component | | | 3.8.37 | control. | | | 3.8.38 | control and monitoring system. | | | 3.8.39 | control equipment. | | | 3.8.40 | cooling water system | | | 3.8.41 | deck machinery | | | 3.8.42 | • | | | | decomposition hierarchy | | | 3.8.43 | definitions | | | 3.8.44 | definitions configuration | | | 3.8.45 | design | | | 3.8.46 | diesel engine | | | 3.8.47 | diesel power system | | | 3.8.48 | document. | | | 3.8.49 | economiser | | | 3.8.50 | electric generator | 11 | | 3.8.51 | electric motor | 11 | | 3.8.52 | electrical equipment | 11 | | 3.8.53 | electrical generation system (power plant) | 11 | | 3.8.54 | electrical machinery | | | 3.8.55 | engine room ventilation system | | | 3.8.56 | engineering analysis | | | 3.8.57 | environment. | | | 3.8.58 | equipment. | | | 3.8.59 | equipment condition | | | 3.8.60 | event and approval data. | | | 3.8.61 | event | | | 3.8.62 | failure | | | 3.8.63 | field data | | | 3.8.64 | filter | | | | fluid distributor | | | 3.8.65 | fluid mover | | | 3.8.66 | | | | 3.8.67 | fore | | | 3.8.68 | fresh water | | | 3.8.69 | fuel oil system. | | | 3.8.70 | function | | | 3.8.71 | functional | | | 3.8.72 | functional characteristics. | | | 3.8.73 | functional specifications | | | 3.8.74 | gas turbine | | | 3.8.75 | gas turbine power system | 12 | | 3.8.76 | gear box | 12 | | 3.8.77 | general characteristics | 12 | | 3.8.78 | heat exchanger | 13 | | 3.8.79 | inertia | 13 | | 3.8.80 | inspect | 13 | |---------|---------------------------------|----| | 3.8.81 | install | 13 | | 3.8.82 | item | 13 | | 3.8.83 | life cycle status. | 13 | | 3.8.84 | liquid impurity | | | 3.8.85 | log | | | 3.8.86 | lube oil system. | | | 3.8.87 | lubrication oil | | | 3.8.88 | machinery | | | 3.8.89 | main equipment | | | 3.8.90 | main propulsion system | | | 3.8.91 | main system | | | 3.8.92 | main function | | | 3.8.93 | maintain. | | | 3.8.94 | maintenance planning | | | | | | | 3.8.95 | manoeuvring propulsion system | | | 3.8.96 | manoeuvring system | | | 3.8.97 | material | | | 3.8.98 | mechanical component | | | 3.8.99 | mechanical connector | | | 3.8.100 | mechanical equipment. | | | 3.8.101 | mechanical machinery | | | 3.8.102 | mechanical power transmission. | | | 3.8.103 | mechanical product | | | 3.8.104 | mechanical system. | | | 3.8.105 | mechanical transmission system. | 14 | | 3.8.106 | members of composition | 14 | | 3.8.107 | metallic impurity | 14 | | 3.8.108 | mounting | 14 | | 3.8.109 | operate | 14 | | 3.8.110 | part | 14 | | 3.8.111 | physical | 14 | | 3.8.112 | piping connector | | | 3.8.113 | piping equipment | | | 3.8.114 | piping system | | | 3.8.115 | plan | | | 3.8.116 | podded drive propulsor | | | 3.8.117 | port | | | 3.8.118 | power generation | | | 3.8.119 | power system | | | 3.8.120 | prime mover | | | 3.8.121 | process equipment | | | 3.8.122 | procure | | | 3.8.123 | product configuration | | | 3.8.124 | product connectivity | | | | • | | | 3.8.125 | product structure | | | 3.8.126 | propulsion system | | | 3.8.127 | propulsion | 1) | | | propulsor | | |---------|---|----| | | pump | | | | pump-jet propulsor | | | | reliability, availability and maintainability (RAM) analysis | | | | reliability, availability and maintainability (RAM) characteristics | | | | reciprocating machinery | | | | rotating machinery | | | | schematic presentationscrew propeller | | | | sediments | | | | shaft bearing | | | | shaftshaft | | | | ship mechanical system | | | | ship mooring system | | | | ship operation | | | | silencer | | | 3.8.144 | solid model | 16 | | 3.8.145 | spatial arrangements | 16 | | 3.8.146 | steam generation system | 16 | | | steam generation. | | | | steam power system | | | | steam turbine. | | | | steering mechanism | | | | supercharger | | | | survey planning | | | | survey | | | | system | | | | tasktime based maintenance | | | | transmission (electrical, mechanical, hydraulic | | | | tunnel thruster | | | | turbine | | | | turbocharger. | | | | water-jet propulsor. | | | | iations | | | | on requirements | | | | • | | | | functionality | | | | nfiguration_definitions | | | | ines | | | | sel_engines | | | | ternal_references | | | • | s_material_properties | | | | ing_equipments | | | | uid_material_propertiesal_co_ordinate_systems | | | | cai_co_ordinate_systems | | | | maintenance tasks | | | | | | 4 | 4.1.12 mechanical_product_anomalies 4.1.13 mechanical_product_components. 4.1.16 mechanical_product_components. 4.1.16 mechanical_product_definitions. 4.1.17 mechanical_product_definitions. 4.1.18 mechanical_product_general_characteristics. 4.1.19 mechanical_product_general_characteristics. 4.1.19 mechanical_product_general_characteristics. 4.1.20 mechanical_product_systems. 4.1.21 mechanical_product_systems. 4.1.22 mechanical_product_systems. 4.1.23 other_equipments. 4.1.24 other_tasks. 4.1.25 part4l_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries 4.1.29 screw_propellers 4.1.30 ships 4.1.31 solid_material_properties. 4.1.31 solid_material_properties. 4.1.32 task_definitions 4.1.33 task_definitions 4.1.31 time_and_events. 4.2 Application objects 4.3 Application interpreted model. 5.1 Mapping table 5.2 AIM EXPRESS short listing. 6. Conformance requirements. Annexes A AIM EXPRESS expanded listing B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification. E.2 Schema identification. E.2 Schema identification. F.1 Application activity model definitions and
abbreviations. F.2 Application reference model. H AIM EXPRESS.G J AIM EXPRESS listing. K Bibliography. | | 4.1.11 | measure_with_units | 24 | |--|----|----------|--|-----| | 4.1.14 mechanical_product_connections. 4.1.15 mechanical_product_connections. 4.1.17 mechanical_product_definitions. 4.1.18 mechanical_product_equipments. 4.1.19 mechanical_product_general_characteristics. 4.1.10 mechanical_product_representations. 4.1.21 mechanical_product_structures 4.1.21 mechanical_product_structures. 4.1.22 mechanical_product_systems. 4.1.23 other_equipments. 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers 4.1.30 ships. 4.1.31 solid_material_properties. 4.1.32 sack_definitions. 4.1.33 task_s. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS expanded listing. 6 Conformance requirements. Annexes A AIM EXPRESS expanded listing. B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma. E. In Document identification. E. 2 Schema identification. E. 2 Schema identification. E. 2 Schema identification. E. 3 Application activity model definitions and abbreviations. F. 2 Application reference model. H AIM EXPRESS listing. | | 4.1.12 | mechanical_machineries | 24 | | 4.1.15 mechanical_product_connections. 4.1.16 mechanical_product_definitions. 4.1.17 mechanical_product_equipments. 4.1.18 mechanical_product_equipments. 4.1.19 mechanical_product_representations. 4.1.19 mechanical_product_representations. 4.1.21 mechanical_product_ruturers. 4.1.21 mechanical_product_structures. 4.1.22 mechanical_products. 4.1.23 other_equipments. 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers. 4.1.29 screw_propellers. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS expanded listing. B AIM Short names. C Implementation method - specific requirements. Annexes A AIM EXPRESS expanded listing. B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma. E.1 Document identification. E.2 Schema identification. E.2 Schema identification. E.3 Application activity model definitions and abbreviations. F.2 Application activity model definitions and abbreviations. F.2 Application reference model. H AIM EXPRESS listing. AIM EXPRESS listing. | | 4.1.13 | mechanical_product_anomalies | 25 | | 4.1.16 mechanical_product_definitions. 4.1.17 mechanical_product_equipments 4.1.18 mechanical_product_general_characteristics. 4.1.19 mechanical_product_representations. 4.1.20 mechanical_product_structures. 4.1.21 mechanical_product_structures. 4.1.22 mechanical_product_structures. 4.1.23 other_equipments 4.1.24 other_lasks. 4.1.25 part4l_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers 4.1.20 screw_propellers 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.31 time_and_events. 4.2 Application objects 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing. 6 Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration. E.1 Document identification. E.2 Schema identification. E.2 Schema identification. F.2 Application activity model definitions and abbreviations. F.2 Application activity model definitions and abbreviations. F.2 Application reference model. H AIM EXPRESS listing. AIM EXPRESS listing. | | 4.1.14 | mechanical_product_components | 25 | | 4.1.17 mechanical_product_equipments 4.1.18 mechanical_product_general_characteristics. 4.1.19 mechanical_product_representations 4.1.20 mechanical_product_structures. 4.1.21 mechanical_products. 4.1.22 mechanical_products. 4.1.23 other_equipments. 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers. 4.1.21 solid_material_properties. 4.1.21 solid_material_properties. 4.1.22 task_definitions. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing. 6. Conformance requirements. Annexes A AIM EXPRESS expanded listing. B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma. E.1 Document identification. E.2 Schema identification. E.2 Schema identification. E.2 Application activity model diagrams. G Application activity model diagrams. F.2 Application activity model diagrams. G Application reference model. H AIM EXPRESS listing. AIM EXPRESS listing. | | 4.1.15 | mechanical_product_connections | 26 | | 4.1.18 mechanical_product_general_characteristics. 4.1.19 mechanical_product_representations. 4.1.21 mechanical_product_systems. 4.1.22 mechanical_products. 4.1.23 other_equipments. 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics 4.1.28 reciprocating_machineries. 4.1.29 reciprocating_machineries. 4.1.20 screw_propellers. 4.1.21 solid_material_properties. 4.1.22 task_definitions. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing. 6. Conformance requirements. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration. E.2 Schema identification. E.2 Schema identification. F.2 Application activity model definitions and abbreviations. F.2 Application reference model. H AIM EXPRESS G J AIM EXPRESS listing. | | 4.1.16 | mechanical_product_definitions | 26 | | 4.1.19 mechanical_product_representations 4.1.20 mechanical_product_structures. 4.1.21 mechanical_product_structures. 4.1.22 mechanical_products. 4.1.23 other_equipments 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics 4.1.28 reciprocating_machineries 4.1.29 screw_propellers 4.1.30 ships 4.1.31 solid_material_properties. 4.1.32 task_definitions 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing. 6. Conformance requirements Annexes A AIM EXPRESS expanded listing. B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E 1 Document identification. E.1 Document identification. E.2 Schema identification. E.3 Application activity model definitions and abbreviations. F.2 Application reference model. H AIM EXPRESS G | | 4.1.17 | mechanical_product_equipments | 27 | | 4.1.20 mechanical_product_systems. 4.1.21 mechanical_product_systems. 4.1.22 mechanical_products. 4.1.23 other_equipments. 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers. 4.1.30 ships. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing. 6. Conformance requirements. Annexes A AIM EXPRESS expanded listing B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration. E.1 Document identification. E.2 Schema identification. E.3 Schema identification. E.4 Application activity model definitions and abbreviations. F.2 Application activity model definitions and abbreviations. F.2 Application reference model. H AIM EXPRESS G. J AIM EXPRESS G. J AIM EXPRESS Slisting. | | 4.1.18 | mechanical_product_general_characteristics | 27 | | 4.1.21 mechanical_products 4.1.22
mechanical_products 4.1.23 other_equipments 4.1.24 other_tasks | | 4.1.19 | mechanical_product_representations | 27 | | 4.1.22 mechanical_products 4.1.23 other_equipments 4.1.24 other_tasks 4.1.25 part41_resources 4.1.26 part42_resources 4.1.27 RAM_characteristics 4.1.28 reciprocating_machineries 4.1.29 screw_propellers 4.1.30 ships 4.1.31 solid_material_properties 4.1.32 task_definitions 4.1.33 tasks 4.1.34 time_and_events 4.2 Application objects 4.3 Application assertions 5 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification E.2 Schema identification F.2 Application activity model definitions and abbreviations F.2 Application reference model H AIM EXPRESS G J AIM EXPRESS listing | | 4.1.20 | mechanical_product_structures | 28 | | 4.1.23 other_equipments 4.1.24 other_tasks. 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics 4.1.28 reciprocating machineries 4.1.29 screw_propellers. 4.1.30 ships 4.1.31 solid_material_properties 4.1.32 task_definitions 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application assertions. 5 Application interpreted model. 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration. E.1 Document identification. E.2 Schema identification. E.2 Schema identification. F.2 Application activity model definitions and abbreviations. F.2 Application activity model diagrams G Application reference model. H AIM EXPRESS c J AIM EXPRESS listing | | 4.1.21 | mechanical_product_systems | 28 | | 4.1.24 other_tasks 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers. 4.1.30 ships. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing. 6. Conformance requirements. Annexes A AIM EXPRESS expanded listing. B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma. E Information object registration. E.1 Document identification. E.2 Schema identification. E.2 Schema identification. F Application activity model diagrams. G Application reference model. AIM EXPRESS-G J AIM EXPRESS listing. | | 4.1.22 | mechanical_products | 29 | | 4.1.25 part41_resources. 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries 4.1.29 screw_propellers. 4.1.30 ships | | 4.1.23 | other_equipments | 29 | | 4.1.26 part42_resources. 4.1.27 RAM_characteristics. 4.1.28 reciprocating_machineries. 4.1.29 screw_propellers. 4.1.30 ships. 4.1.31 solid_material_properties. 4.1.32 task_definitions. 4.1.33 tasks. 4.1.34 time_and_events. 4.2 Application objects. 4.3 Application assertions. 5 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing. 6. Conformance requirements. Annexes A AIM EXPRESS expanded listing. B AIM short names. C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma. E Information object registration. E.1 Document identification. E.2 Schema identification. E.2 Schema identification. F Application activity model definitions and abbreviations. F.1 Application activity model diagrams. G Application reference model. H AIM EXPRESS G | | 4.1.24 | other_tasks | 30 | | 4.1.27 RAM_characteristics 4.1.28 reciprocating_machineries 4.1.29 screw_propellers 4.1.30 ships | | 4.1.25 | part41_resources | 30 | | 4.1.28 reciprocating_machineries 4.1.29 screw_propellers 4.1.30 ships 4.1.31 solid_material_properties 4.1.32 task_definitions 4.1.33 tasks 4.1.34 time_and_events 4.2 Application objects 4.3 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.26 | part42_resources | 30 | | 4.1.29 screw_propellers 4.1.30 ships 4.1.31 solid_material_ properties 4.1.32 task_definitions 4.1.33 tasks 4.1.34 time_and_events 4.2 Application objects 4.3 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.27 | RAM_characteristics | 31 | | 4.1.30 ships | | 4.1.28 | reciprocating_machineries | 31 | | 4.1.31 solid_material_ properties 4.1.32 task_definitions 4.1.33 tasks 4.1.34 time_and_events 4.2 Application objects 4.3 Application assertions. 5 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing. 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements. C Implementation method - specific requirements (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model definitions and abbreviations F.2 Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.29 | screw_propellers | 31 | | 4.1.32 task_definitions 4.1.33 tasks 4.1.34 time_and_events. 4.2 Application objects 4.3 Application assertions. 5 Application interpreted model. 5.1 Mapping table. 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification. E.2 Schema identification. E.2 Schema identification. F Application activity model definitions and abbreviations. F.1 Application activity model definitions and abbreviations. F.2 Application activity model diagrams G Application reference model. H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.30 | ships | 32 | | 4.1.33 tasks 4.1.34 time_and_events 4.2 Application objects 4.3 Application assertions 5 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing. 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements. D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F.1 Application activity model F.1 Application activity model definitions and abbreviations F.2 Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.31 | solid_material_ properties | 32 | | 4.1.34 time_and_events 4.2 Application objects 4.3 Application assertions 5 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.1 Document identification E.2 Schema identification E.3 Schema identification F Application activity model definitions and abbreviations. F.1 Application activity model diagrams. G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.32 | task_definitions | 32 | | 4.2 Application objects 4.3 Application assertions 5 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.33 | tasks | 33 | | 4.3 Application assertions 5 Application interpreted model 5.1 Mapping table 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | 4.1.34 | time_and_events | 33 | | 5 Application interpreted model | 4 | .2 Appli |
cation objects | 34 | | 5.1 Mapping table | 4 | .3 Appli | cation assertions | 151 | | 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | 5 | Applica | tion interpreted model | 156 | | 5.2 AIM EXPRESS short listing 6. Conformance requirements Annexes A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | 5 | 5.1 Mapr | ping table | 156 | | Annexes A AIM EXPRESS expanded listing | | | | | | A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification. E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations. F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | 6. | Conform | nance requirements | 157 | | A AIM EXPRESS expanded listing B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification. E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations. F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | | • | | | B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | An | nexes | | | | B AIM short names C Implementation method - specific requirements D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | A | AIM EX | KPRESS expanded listing | 159 | | D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | В | | | | | D Protocol Implementation Conformance Statement (PICS) proforma E Information object registration E.1 Document identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | C | Impleme | entation method - specific requirements | 161 | | E Information object registration E.1 Document identification E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | D | | | | | E.2 Schema identification F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | E | | | | | F Application activity model F.1 Application activity model definitions and abbreviations F.2 Application activity model diagrams G Application reference model. H AIM EXPRESS-G J AIM EXPRESS listing | | E.1 | Document identification | 161 | | F.1 Application activity model definitions and abbreviations. F.2 Application activity model diagrams. G Application reference model. H AIM EXPRESS-G. J AIM EXPRESS listing. | | E.2 | Schema identification | 161 | | F.2 Application activity model diagrams G Application reference model | F | Applica | tion activity model | 164 | | G Application reference model H AIM EXPRESS-G J AIM EXPRESS listing | | F.1 | Application activity model definitions and abbreviations | 162 | | H AIM EXPRESS-G | | F.2 | Application activity model diagrams | 182 | | J AIM EXPRESS listing | G | Applica | tion reference model | 229 | | | Н | AIM EX | KPRESS-G | 276 | | K Bibliography | J | | · · · · · · · · · · · · · · · · · · · | | | | K | Bibliogr | aphy | 278 | | L Technical discussion | 279 | |---|--------------| | M Mechanical System Breakdown Hierarchy | | | Index | 287 | | 22.00.2 | | | List of Figures | | | Figure F.1 – Node A0: ship life cycle description | | | Figure F.2 – Node A0: perform ship life cycle | | | Figure F.3 – Node A1: specify ship | | | Figure F.4 – Node A12: prepare bid | | | Figure F.5 – Node A122: create preliminary design | | | Figure F.6 - Node A1223: estimate hydrodynamics and power | ing190 | | Figure F.7 $-$ Node A12231: estimate resistance and powering. | | | Figure F.8 – Node A122313: predict propeller performance | | | Figure F.9 - Node A1225: create preliminary machinery desig | n193 | | Figure F.10 – Node A12251: select main engine | | | Figure F.11 – Node A12252: design transmission system | | | Figure F.12 - Node A12253: select auxiliary equipment | | | Figure F.13 – Node A12254: design manoeuvring systems | | | Figure F.14 – Node A12255: select deck machinery | | | Figure F.15 – Node A2: complete and approve ship design | | | Figure F.16 - Node A25: complete design of ship machinery | | | Figure F.17 – Node A251: finalise machinery design | | | Figure F.18 – Node A2511: finalise main engine selection | | | Figure F.19 - Node A2512: finalise transmission system desig | ;n | | Figure F.20 - Node A2513: finalise auxiliary equipment select | tion204 | | Figure F.21 – Node A2514: finalise manoeuvring system design | gn205 | | Figure F.22 - Node A2515: finalise deck machinery design | | | Figure F.23 – Node A252: approve design of ship machinery | | | Figure F.24 - Node A2522: check design against rules and reg | gulations208 | | Figure F.25 – Node A3: produce and inspect ship | | | Figure F.26 – Node A33: assemble ship | | | Figure F.27 – Node A333: install equipment | | | Figure F.28 – Node A34: test ship | | | Figure F.29 – Node A4: operate and maintain a ship | 213 | | Figure F.30 – Node A42: maintain a ship | 214 | | Figure F.31 – Node A421: maintain on board | | | Figure F.32 – Node A4211: monitor status | 216 | | Figure F.33 – Node A4212: diagnose | 217 | | Figure F.34 – Node A4213: adjust maintenance programme | 218 | | Figure F.35 – Node A4214: perform maintenance | | | Figure F.36 – Node A42141: prepare maintenance | | | Figure F.37 – Node A42142: execute maintenance | | | Figure F.38 – Node A423: maintain at yard | | | Figure F.39 – Node A4231: perform maintenance | | | Figure F.40 – Node A42311: prepare maintenance | | | Figure F.41 – Node A42312: execute maintenance | | | Figure F.42 – Node A4232: release for operation | 226 | |---|---------------| | Figure F.43 – Node A43: survey a ship | 227 | | Figure F.44 – Node A432: survey planning | 228 | | Figure G.1 - Graphical notation of the major aspects of the configuration_definitions UoF schema | | | (figure 1 of 1) | 230 | | Figure G.2 - Graphical notation of the major aspects of the cranes UoF schema (figure 1 of 3) | 231 | | Figure G.3 - Graphical notation of the major aspects of the cranes UoF schema (figure 2 of 3) | 232 | | Figure G.4 - Graphical notation of the major aspects of the cranes UoF schema (figure 3 of 3) | 233 | | Figure G.5 - Graphical notation of the major aspects of the diesel_engines UoF schema 1 of 2) | figure
234 | | Figure G.6 - Graphical notation of the major aspects of the diesel_engines UoF schema (figure 2 of 2) | 235 | | Figure G.7 - Graphical notation of the major aspects of theexternal_references UoF schema | 233 | | (figure 1 of 1) | 236 | | Figure G.8 - Graphical notation of the major aspects of the gas_material_properties UoF schema | 230 | | (figure 1 of 1) | 237 | | Figure G.9 - Graphical notation of the major aspects of the lifting_equipments UoF schema | 231 | | (figure 1 of 1) | 238 | | Figure G.10 - Graphical notation of the major aspects of the liquid_material_properties UoF scher | | | (figure 1 of 2) | | | Figure G.11 - Graphical notation of the major aspects of the liquid_material_properties UoF scher | | | (figure 2 of 2) | | | Figure G.12 - Graphical notation of the major aspects of the local_co_ordinate_systems UoF schen | | | (figure 1 of 1) | | | Figure G.13 - Graphical notation of the major aspects of the machineries UoF schema | | | (figure 1 of 2) | 242 | | Figure G.14 - Graphical notation of the major aspects of the machineries UoF schema | | | (figure 2 of 2) | 243 | | Figure G.15 - Graphical
notation of the major aspects of the maintenance_tasks UoF schema | | | (figure 1 of 1) | 244 | | Figure G.16 - Graphical notation of the major aspects of the measure_with_units UoF schema | | | (figure 1 of 1) | 245 | | Figure G.17 - Graphical notation of the major aspects of the mechanical_machineries UoF schema | L | | (figure 1 of 1) | 246 | | Figure G.18 - Graphical notation of the major aspects of the mechanical_product_anomalies UoF | | | schema (figure 1 of 2) | 247 | | Figure G.19 - Graphical notation of the major aspects of the mechanical_product_anomalies UoF | | | schema (figure 2 of 2) | 248 | | Figure G.20 - Graphical notation of the major aspects of the mechanical_product_components Uol | F | | schema (figure 1 of 1) | 249 | | Figure G.21 - Graphical notation of the major aspects of the mechanical_product_connections Uol | F | | schema (figure 1 of 1) | 250 | | Figure G.22 - Graphical notation of the major aspects of the mechanical_product_definitions UoF | | | schema (figure 1 of 3) | 251 | | Figure G.23 - Graphical notation of the major aspects of the mechanical_product_definitions UoF | | | schema (figure 2 of 3) | 252 | | Figure G.24 - Graphical notation of the major aspects of the mechanical_product_definitions UoF | | | schema (figure 3 of 3) | 253 | | Figure G.25 - Graphical notation of the major aspects of themechanical_product_equipments Uol | 7 | |--|-----| | schema (figure 1 of 1) | 254 | | Figure G.26 - Graphical notation of the major aspects of the mechanical_product_general_ | | | characteristics UoF schema (figure 1 of 1) | 255 | | Figure G.27 - Graphical notation of the major aspects of the mechanical_product_representations schema (figure 1 of 1) | | | Figure G.28 - Graphical notation of the major aspects of the mechanical_product_structures UoF | | | schema (figure 1 of 2) | | | Figure G.29 - Graphical notation of the major aspects of the mechanical_product_structures UoF | | | schema (figure 2 of 2) | 258 | | Figure G.30 - Graphical notation of the major aspects of the mechanical_product_systems UoF so | | | | 259 | | (figure 1 of 1)Figure G.31 - Graphical notation of the major aspects of the mechanical_products UoF schema (| | | | | | 1 of 1)Figure G.32 - Graphical notation of the major aspects of the other_equipments UoF schema | 200 | | | 261 | | (figure 1 of 1). | 261 | | Figure G.33 - Graphical notation of the major aspects of the other_tasks UoF schema | 262 | | (figure 1 of 1). | 262 | | Figure G.34 - Graphical notation of the major aspects of the part41_resources UoF schema | 262 | | (figure 1 of 1) | 263 | | Figure G.35 - Graphical notation of the major aspects of the part42_resources UoF schema | 264 | | (figure 1 of 1) | 264 | | Figure G.36 - Graphical notation of the major aspects of the RAM_characteristics UoF schema | | | 1 of 1) | | | Figure G.37 - Graphical notation of the major aspects of thereciprocating_machineries UoF scher | | | (figure 1 of 1) | 266 | | Figure G.38 - Graphical notation of the major aspects of the screw_propellers UoF schema | | | (figure 1 of 3) | 267 | | Figure G.39 - Graphical notation of the major aspects of the screw_propellers UoF schema | | | (figure 2 of 3) | 268 | | Figure G.40 - Graphical notation of the major aspects of the screw_propellers UoF schema | | | (figure 3 of 3) | 269 | | Figure G.41 - Graphical notation of the major aspects of the ships UoF schema (figure 1 of 1) | | | Figure G.42 - Graphical notation of the major aspects of the solid_material_properties UoF scher | | | (figure 1 of 1) | 271 | | Figure G.43 - Graphical notation of the major aspects of the task_definitions UoF schema | | | (figure 1 of 2) | 272 | | Figure G.44 - Graphical notation of the major aspects of the task_definitions UoF schema | | | (figure 2 of 2) | | | Figure G.45 - Graphical notation of the major aspects of the tasks UoF schema (figure 1 of 1) | 274 | | Figure G.46 - Graphical notation of the major aspects of the time_and_events UoF schema | | | (figure 1 of 1) | 275 | # **List of Tables** ### **Foreword** The International Organization for Standardization (ISO) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO Technical Committees. Each member body, interested in a subject for which a Technical Committee has been established, has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by Technical Committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote. International Standard ISO 10303-226 was prepared by Technical Committee ISO/TC 184, *Industrial automation systems and integration, Subcommittee SC4, Industrial data.* Many organisations have contributed and sponsored the development of this standard through various projects. The contributions of the following are acknowledged: - **ShipSTEP**: A European industry funded project, ran from 1994 to 1996, with 8 European companies contributing to the development of shipbuilding Application Protocols. - EMSA (European Marine Step Association): EMSA was founded in 1995 to co-ordinate European Marine Step developments and embraces the main European Shipbuilders, Classification Societies and marine software vendors. - NIDDESC II (Navy Industrial Digital Data Exchange Standards Committee): The USA Navy Industrial Digital Data Exchange Standards Committee was formed in 1986 as a cooperative effort by the Naval Sea Systems Command (NAVSEA) and the National Shipbuilding Research Program (NSRP) to collect and exchange information on product model data requirements and to ensure that benefits expected by industry and Navy are incorporated into national and international data exchange standards. The NIDDESC effort has resulted in the development of a suite of product model data exchange specifications. These exchange specifications have been submitted to the ISO TC184 SC4 in 1993 for inclusion in the series of ISO 10303 application protocols, which form the ship product model data. - **EDIMAR** (Electronic <u>Data Interchange</u> in the European <u>MAR</u>itime Industry): European Union funded project, ran from 1997 to 1998, with 11 European companies contributing to the development of the shipbuilding aspect of AP226. - AP226 EWGs (Expert Working Groups): Many organisations have contributed to this part through active participation in AP226 EWGs within which the application experts' view and consensus were sought with regard to industry requirements. ### Introduction ISO 10303 is an International Standard for the computer-interpretable representation and exchange of product data. The objective is to provide a neutral mechanism capable of describing product data throughout the life cycle of product and independent from any particular system. The nature of this description makes it suitable not only for neutral file exchange, but also as a basis for implementing and sharing product databases and archiving. This International Standard is organised as a series of parts, each published separately. The parts of ISO 10303 fall into one of the following series: description methods, integrated resources, application interpreted constructs, application protocols, abstract test suites, implementation methods and conformance testing. The series are described in ISO 10303-1. This part of ISO 10303 is a member of the application protocol series. This part of ISO 10303 specifies an application protocol (AP) for the exchange of data pertaining to all life-cycle phases of ship mechanical systems. The principal focus of this part of ISO 10303 is: - Ship propulsion system including main engine, propulsor and shafting systems. - Auxiliary systems including fuel oil, lube oil, power generation, cooling water system, and steam generation systems. - Deck machinery including cranes, derricks and winches. This application protocol is one of the series of ship product application protocols as shown in Figure 1. The series of ship industry application protocols assumes that the ship product model can be divided into separate ship systems that each covers a key element of the ship for its whole life cycle. These key elements are: - ship moulded forms; - ship arrangements; - ship distribution systems (piping, heating, ventilation and air conditioning, as well as electrical and cableway); - ship structures; - ship mechanical systems; - ship outfit and furnishings; - ship mission systems. Each separate system is described by one or more different application protocols. The full series of shipbuilding application protocols is depicted in Figure 1. The information requirements for ship mechanical systems have been organised in a series of units of functionality (UoF). Figure 2 shows the units of functionality for this part of ISO 10303 in the form of AP226 data planning model. For further introductory information of STEP, AP226 and its data planning model, please refer to annex L. Figure 1 - Ship product application protocols Figure 2 - AP226 Data Planning Model This part supports and interacts with the following parts of ISO 10303. **ISO 13584**: parts library AP226 supports external references to classes defined by ISO 13584. This part of ISO 10303 supports the exchange of standard parts catalogues used to define specific items within ship mechanical systems. A standard parts catalogue may be exchanged as part of a design, or referenced by a customer to a contractor in order to specify the standard parts that shall be used.
ISO 10303-221: Application Protocol: Functional data and their schematic representation for process plant. This part of ISO 10303 supports external references to classes of properties defined by ISO 10303-221. ISO 10303-215: Application protocol: Ship Arrangements **ISO 10303-216**: Application protocol: Ship Moulded Forms. **ISO 10303-217**: Application protocol: Ship Piping Systems. **ISO 10303-218**: Application protocol: Ship Structures Application protocols provide the basis for developing implementations of ISO 10303 and abstract test suites for the conformance testing of AP implementations. Clause 1 defines the scope of the application protocol and summarises the functionality and data covered by the application protocol. Clause 2 provides a list of normative references. Clause 3 lists the vocabulary defined in this part of ISO 10303 and gives pointers to vocabulary defined elsewhere. An application activity model that is the basis for the definition of the scope is provided in annex F. The information requirements of the application are specified in clause 4 using terminology appropriate to the application. A graphical representation of the information requirements, referred to as the application reference model (ARM), is given in annex G. Resource constructs are interpreted to meet the information requirements. This interpretation produces the application interpreted model (AIM). This interpretation, given in clause 5.1, shows the correspondence between the ARM and the AIM. The short listing of the AIM specifies the interface to the integrated resources and is given in clause 5.2. Note that the definitions and EXPRESS provided in the integrated resources for constructs used in the AIM may include select list items and subtypes which are not imported into the AIM. The expanded listing given in annex A contains the complete EXPRESS for the AIM without annotation. A graphical representation of the AIM is given in annex H. Additional requirements for specific implementation methods are given in annex C. # Industrial automation systems and integration -Product data representation and exchange -Part 226: Application Protocol: Ship Mechanical Systems # 1 Scope This part of ISO 10303 specifies the use of the integrated resources necessary for the scope and information requirements for the exchange of ship mechanical systems information. NOTE 1 - The Application Activity Model (AAM) in Annex F provides a graphical representation of | | the processes and information flows which are the basis for the definition of the scope of this part of ISO 10303. | |--------|---| | ne fol | lowing are within the scope of this Part of ISO 10303: | | _ | The representation of the mechanical systems and their principal components for both naval and commercial ships; | | _ | The product definition data pertaining to the following lifecycle phases of the ship mechanical systems: | | | — Specification; | | | — Design/Selection; | | | NOTE 2 - The design data will be supported for those components that are designed and manufactured within the context of marine industry as shown in AAM (Annex F). For example, data necessary to design a diesel engine will not be supported while data required to design a marine propulsor will be supported. | | | — Approval; | | | — Installation; | | | — Commissioning/Acceptance; | | | — Operation; | | | — In-Service Inspection and Maintenance; | | | — Decommissioning/Disposal. | | | The product definitions of the following mechanical systems: | | | | - the components in the systems that supply air to the engine room such as engine room ventilation fans and exhaust gas system such as silencers, economiser and so on. - the components in the fuel oil treatment and supply systems, engine lubricating system and engine cooling system. - the propulsion system: including main engines, shafts, couplings, gearing and propulsor; - the manoeuvring system, consisting of the rudder, stock and actuator; thrusters including azimuthing thrusters; hydroplanes stock and actuator; stabilisers; cycloidal propellers type units; pivoting nozzles and water jet type systems. - the power systems including electric propulsion and auxiliary electrical generation; - The product definitions of the following mechanical components: - the main engine; - pumps necessary for the operation of the main propulsion and essential machinery such as boiler feed, condensation extraction, fuel oil pumps, lubricating oil pumps and cooling water pumps. - the auxiliary machinery such as heat exchangers, air compressors and air receivers; - boilers; - auxiliary engines and thruster units; - deck machinery such as windlasses, winches, capstans, cranes and derricks; - The distinction between the physical specifications and the functional specifications of various systems and components. - The following product definition information: - the functional and physical connectivity between components and between systems including physical connectivity of equipment to ship structure; - functional description of components and systems such as performance and operational characteristics; - geometric representation of systems and components to a level compatible to lifecycle phases of the corresponding system and component; - technological information such as material, tolerance, noise, vibration, shock and stress characteristics; - data that are necessary for tracking a component's lifecycle and operational history such as specification, in-service inspection and maintenance data. The following are outside the scope of this Part of 10303: - the product definition data and physical connectivity pertaining to the following components and systems including: - the piping arrangements not integral to the machinery unit; - the electrical distribution systems not integral to the machinery unit; - the control systems not integral to the machinery unit; - maintenance equipment such as cranes, tools and so on. - the ship's arrangement and compartmentation; - the ship's Heating, Ventilation and Air Conditioning (HVAC) systems; - the mission specific mechanical systems of the ship including: - cargo refrigeration - naval military equipment - the outfitting of the ship, including hatch covers, watertight doors, fire fighting appliances, anchor and chain cables, davits and lifesaving appliances, sewage systems; - data relating to the manufacture of the components. #### 2 Normative References The following standards contain provisions which, through reference to this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10303 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 31:1994, Quantities and Units. ISO 1000:1992, SI units and recommendations for the use of their multiples and of certain other units. ISO 8824-1:1994, Information Technology — Open Systems Interconnection — Abstract Syntax Notation One (ASN.1) — Part 1: Specification of Basic notation. ISO 10303-1:1994, Industrial automation systems and integration — Product data representation and exchange — Part 1: Overview and fundamental principles. ISO 10303-11:1994, Industrial automation systems and integration — Product data representation and exchange — Part 11: Description methods: The EXPRESS language reference manual. ISO 10303-21:1994, Industrial automation systems and integration — Product data representation and exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure. ISO 10303-31:1994, *Industrial automation systems and integration* — *Product data representation and exchange* — *Part 31: Conformance testing methodology and framework: General concepts.* ISO 10303-41:1994, Industrial automation systems and integration — Product data representation and exchange — Part 41: Integrated generic resources: Fundamentals of product description and support. ISO 10303-42:1994, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resources: Geometric and topological representation. ISO 10303-43:1994, Industrial automation systems and integration — Product data representation and exchange — Part 43: Integrated generic resources: Representation structures. ISO 10303-44:1994, Industrial automation systems and integration — Product data representation and exchange — Part 44: Integrated generic resources: Product structure configuration. ISO 10303-45: 1994, Industrial automation systems and integration — Product data representation and exchange — Part 45: Integrated generic resources: Materials. ISO 10303-46:1994, Industrial automation systems and integration — Product data representation and exchange — Part 46: Integrated generic resources: Visual presentation. ISO 10303-49: 1994, Industrial automation systems and integration — Product data representation and exchange — Part 49: Integrated generic resource: Process structure an properties. ISO 10303-101: 1994, Industrial automation systems and integration — Product data representation and exchange — Part 101: Integrated application resource: Draughting. ISO 13584-1:, Industrial automation systems and integration — Parts library — Part 1: Overview and fundamental Principles. ISO 13584-42:, Industrial automation systems and integration — Parts library — Part 42: Methodology for Structuring Part Families. ISO 7967-1: 1987, Reciprocating internal combustion
engines — Vocabulary of components and systems. ISO 2710: 1978, Reciprocating internal combustion engines - Vocabulary. IEC 50 (191): 1990-12, First Edition, International Electrotechnical Vocabulary, Chapter 191: Dependability and quality of service. ISO DIS 14224: 1997, Petroleum and natural gas industries – Collection and exchange of reliability and maintenance data for equipment. # 3 Definitions and abbreviations # 3.1 Terms defined in ISO 10303-1 This part of ISO 10303 makes use of the following terms defined in ISO 10303-1: | — abstract test suite (ATS); | |--| | — application; | | — application activity model (AAM); | | — application context; | | — application interpreted model (AIM); | | — application object; | | — application protocol (AP); | | — application reference model (ARM); | | — assembly; | | — conformance class; | | — conformance requirement; | | — conformance testing; | | — context; | | — data; | | — data exchange; | | — implementation method; | | — information; | | — integrated resource; | | — interpretation; | | — model; | | — PICS proforma; | | — product; | | — product data; | | | protocol implementation conformance statement (PICS); | |---------|--| | | — structure; | | | — unit of functionality (UoF). | | 3.2 | Terms defined in ISO 10303-31 | | This pa | art of ISO 10303 makes use of the following terms defined in ISO 10303-31: | | | — conformance testing; | | | — postprocessor; | | | — preprocessor. | | 3.3 | Terms defined in ISO 10303-41 | | This pa | art of ISO 10303 makes use of the following terms defined in ISO 10303-41: | | | — Address; | | | — Date; | | | — Date_and_time; | | | — Label; | | | — Organization; | | | — Organizational _project | | | — Person_and_organization; | | | — Text. | | 3.4 | Terms defined in ISO 10303-42 | | This pa | art of ISO 10303 makes use of the following terms defined in ISO 10303-42: | | | — Cartesian_point; | | | — Direction; | | | — Geometric_representation_item; | | | — Solid_model; | — Vector. ### **3.5** Terms defined in ISO 10303-43 This part of ISO 10303 makes use of the following terms defined in ISO 10303-43: — representation. ### 3.6 Terms defined in ISO DIS 14224 This part of ISO 10303 makes use of the following terms defined in ISO DIS 14224: - equipment unit; - failure mode; - non-critical failure. # 3.7 Terms defined in IEC 50(191) This part of ISO 10303 makes use of the following terms defined in IEC 50 (191): - availability; - availability performance; - condition monitoring; - corrective maintenance; - critical failure; - downstate; - failure cause; - failure rate; - failure; - fault mode; - fault; - latent fault; - logisitics delay; |
main availability; | |---| |
maintainability; | |
maintainability performance; | |
maintenance; | |
maintenance man-hour; | |
maintenance time; | |
mean time between failure; | |
mean time to failure; | |
mean time to repair; | |
preventive maintenance; | |
reliability; | |
reliability and maintainability management; | |
scheduled maintenance; | |
unscheduled maintenance; | |
upstate. | ### 3.8 Other definitions For the purposes of this Part of ISO 10303, the following definitions apply: - **3.8.1** acquisition code: a code number assigned to a product by a purchaser during the order process. - **3.8.2 activity:** anything that is carried out by human or by knowledge-based systems on a mechanical product or in relation to a mechanical product. - **3.8.3 aft:** the location at or near the stern of the ship. - **3.8.4 ambient conditions:** anything relating to a condition of the environment (see 3.8.57) such as temperature and pressure of the ambient fluid. All the conditions that influence the mechanical product and all the conditions resulting from the mechanical product's function are included. - **3.8.5** ambient fluid: a fluid that surrounds a mechanical product. - **3.8.6** anomaly: a product problem or enhancement that may result in a change requirement. The product problems are deviations from expected product specification. The product enhancement is a need for improved product specification. - **3.8.7** approve: an activity (see 3.8.2) that confirms a mechanical product as being fit for purpose. - **3.8.8** assembly: a composition (see 3.8.26) plus the specification of how the things in the composition are related to each other. - **3.8.9** assess: an activity (see 3.8.2) that assesses a mechanical product for fitness for purpose. - **3.8.10** auxiliary: any support role with reference to a main function (see 3.8.92). - **3.8.11** auxiliary system: a system (see 3.8.154) that supports one or more main systems (see 3.8.91). In ship terminology, auxiliary systems refer to those systems that support the propulsion system. - **3.8.12** azimuth thruster: a propulsor consisting of a propeller that can be rotated around a vertical shaft. - **3.8.13 bilge system:** a system (see 3.8.154), comprising pumps, pipes and so on for handling bilge water. - **3.8.14 bill of material:** a composition (see 3.8.26) plus the identification of all the mechanical products included in the composition. - **3.8.15 boiler** (steam generator): a type of steam generation system (see 3.8.146). - **3.8.16 breakdown maintenance:** the maintenance to be carried out after a fault recognition and intended to put a mechanical product into a state in which it can perform a required function. - **3.8.17 CAD drawing:** a plan (see 3.8.115) prepared by a CAD-system. - **3.8.18 cargo handling system:** a system (see 3.8.154) whose main function (see 3.8.92) is handling ship cargo. - **3.8.19 catalogue:** a type of document (see 3.8.48) in printed or electronic format that contains information on one or a set of mechanical products. - **3.8.20** class: a concept to group mechanical products, with similar characteristics, with the purpose of describing the common properties of the class members. Each mechanical product belongs to at least one class. - NOTE 1 A class usually has a criterion for inclusion or exclusion of mechanical products. - **3.8.21 classification:** the process of ensuring that a ship is designed, built and maintained to a prescribed standard. This is done by a periodic survey of the ship. - **3.8.22 classification society:** an organisation that enhances the safety of life and property at sea by providing rules, regulations and personnel for assessing and classifying ships during their life cycle. - **3.8.23 clutch:** a disengageable connection between two elements in a mechanical transmission system. - **3.8.24 collection:** a set of things that do not have any relationship to each other apart from being members of the same set. - **3.8.25 component:** a mechanical product that is part of another mechanical product and has not already been classified as a system (see 3.8.154) or an equipment (3.8.58). A component cannot have a system or an equipment as part of it. - **3.8.26 composition:** an association that indicates that one mechanical product is composed of many other mechanical products. - **3.8.27 compressed air system:** a system (see 3.8.154) that produces compressed air to satisfy the requirements of all components that require compressed air to perform their function. - **3.8.28 compression ratio:** the ratio of the maximum and minimum cylinder trapped volumes of a reciprocating machinery. - **3.8.29 compressor:** a reciprocating or rotary machinery for raising the pressure of air or another gas. - **3.8.30 condition based maintenance:** a maintenance to be carried out according to prescribed criteria and intended to reduce the probability of failure or the degradation of a mechanical product. - **3.8.31 condition monitoring:** a function by which the state of a mechanical product is monitored. - **3.8.32 configuration:** a data specification that deals with identification, approvals and versioning aspects of a mechanical product or its definitions (see 3.8.43). - **3.8.33 connecting component:** any intermediatary mechanical product including weld, gaskets, bolts, nuts, and so on that are needed in order to realise a connection (see 3.8.34). - **3.8.34 connection:** an association between two mechanical products that results from a physical joining. - **3.8.35 connector:** a mechanical product that establishes an interface between two mechanical products or between a mechanical product and other category of items. - **3.8.36 connector component:** a type of component (see 3.8.25) that plays the role of a connector (see 3.8.35). - **3.8.37** control: a function (see 3.8.70) by which a process is controlled. - **3.8.38 control and monitoring system:** a system (see 3.8.154) with the primary function of controlling and/or monitoring a mechanical product. - **3.8.39 control equipment:** a non-machinery equipment (see 3.8.58) that is primarily used in the control and monitoring systems. - **3.8.40 cooling water system:** a system (see 3.8.154) for storing, treating and transporting water at desired temperature, pressure and flowrate to satisfy the requirements of all equipment (see 3.8.58) that require cooling by water. - **3.8.41 deck machinery:** all types of equipment (see 3.8.58) that are positioned on the ship's deck and perform the operations of mooring, cargo handling and anchor handling including winches, windlasses, capstans, derricks and cranes. - **3.8.42 decomposition hierarchy:** a systematic breakdown of a mechanical product into its subsystems and components. The decomposition hierarchy for selected mechanical products are documented in Annex M of this part of ISO 10303. - **3.8.43 definitions:** an aggregation of the information and properties that defines or describes one or many aspects of a mechanical product. - **3.8.44 definitions configuration:** a
data specification that defines the configuration (see 3.8.32) for a set of definitions (see 3.8.43). - **3.8.45 design:** a task (see 3.8.155) that creates and defines, with drawings and data, a new version of a mechanical product. - **3.8.46 diesel engine:** a reciprocating machinery (see 3.8.133) operating on the compression ignition and internal combustion principles and used as a prime mover. - **3.8.47 diesel power system:** a power system (see 3.8.119) with a diesel engine (see 3.8.46) as the prime mover (see 3.8.120). - **3.8.48 document:** any type of information content in the form of manuals, computer files, catalogues, reports, books and so on in standard or non-standard formats. - **3.8.49 economiser:** an equipment (see 3.8.58) that uses the energy of the exhaust gases leaving the diesel engine to heat water for ship domestic use or as a feedwater preheater for an auxiliary boiler. - **3.8.50 electric generator:** an electrical machinery (see 3.8.54) that converts mechanical power into electrical power. - **3.8.51 electric motor:** an electrical machinery (see 3.8.54) that converts electrical power into mechanical power. - **3.8.52 electrical equipment:** an equipment (see 3.8.58) that is primarily used in an electrical system. Electric motors and generators are examples of electrical equipment. - **3.8.53 electrical generation system (power plant):** a system (see 3.8.154) that generates electrical energy by converting fuel energy. - **3.8.54 electrical machinery:** an electrical equipment (see 3.8.52) with the function as machinery. Electrical motors and generators are examples of electrical machinery. - **3.8.55 engine room ventilation system:** a system (see 3.8.154) for supplying fresh air to the engine room. - **3.8.56 engineering analysis:** an activity carried out, either manually or by computer, either experimentally or theoretically, in order to develop or verify a theory, or to quantify one aspect of the mechanical product behaviour. - **3.8.57 environment:** anything external to a mechanical product that has a bearing on function and usage of the mechanical product. - **3.8.58 equipment:** a mechanical product that carries out a generally self contained function and to a large extent may be treated as a single mechanical product for the purpose of design, acquisition, or operation. An equipment has both physical and functional properties. - EXAMPLE 1 A turbocharger is an equipment. A pump is also an equipment. - **3.8.59 equipment condition:** a condition of the equipment that indicates that the equipment's state is just outside the optimum operational limits and that a failure/fault has not been identified in the equipment. Typical conditions are that very small vibrations or increased temperatures have been detected. A condition could be a sign of a latent fault. As soon as a failure/fault is recognised, the equipment state changes from a condition to either a critical or non-critical fault state. - **3.8.60 event and approval data:** a set of data that relates to an event (see 3.8.61) and its approval/authorisation. - **3.8.61 event:** a state which identifies that something has happened at a certain time. A person normally causes the event. - **3.8.62 failure:** the condition of mechanical product under which the expected and satisfactory performance cannot be attained. - **3.8.63 field data:** the performance information and data about an operational product. - **3.8.64 filter:** a device or porous substance through which a gas or a liquid is passed in order to remove solids or impurities. - **3.8.65 fluid distributor:** any equipment (see 3.8.58) or system (see 3.8.154) that is used to distribute or direct fluids. - **3.8.66 fluid mover:** any equipment (see 3.58) that compresses/pressurises a fluid. - **3.8.67 fore:** that part of the ship which is at the front of the ship. - **3.8.68 fresh water:** the processed water on-board ship that is used for utilities. - **3.8.69 fuel oil system:** a system (see 3.8.154) for storing, treating, and transporting liquid fuel to equipment (see 3.8.58) that requires fuel to perform its function. - **3.8.70** function: the underlying purpose for the existence or the use of a mechanical product. - **3.8.71 functional:** a reference to the actions, activities, or capabilities that a mechanical product provides or may provide to fulfil a purpose. - **3.8.72 functional characteristics:** nomenclature, codes, and named values that describe or specify the performance or behaviour of a mechanical product. - EXAMPLE 1 Typical functional characteristics of a diesel engine are its speed-power relationships. Typical pump characteristics are its head-flowrate relationships. - **3.8.73 functional specifications:** nomenclature, codes, and named values that describe or specify the performance or behaviour to be met by a mechanical product. - **3.8.74** gas turbine: a rotating machinery operating on the continuous ignition and internal combustion principle and used as a prime mover (see 3.8.120). - **3.8.75** gas turbine power system: a power system (see 3.8.119) with a gas turbine engine as the prime mover. - **3.8.76 gear box:** an equipment (see 3.8.58) used for reducing or increasing shaft speed within a transmission system, thereby matching the prime mover to the load. A gear box may also combine two or more shaft inputs into one shaft output or vice-versa. - **3.8.77 general characteristics:** the most general and most widely used information relating to a mechanical product. - **3.8.78** heat exchanger: an equipment (see 3.8.58) that transfers heat from one medium or system to another. - **3.8.79 inertia:** the tendency of a body rotating about a fixed axis to resist a change in this rotating motion. Normally referred to as moment of inertia. - **3.8.80 inspect:** an activity (see 3.8.2) that assesses a mechanical product against a design or any other specified requirements. - **3.8.81** install: an activity (see 3.8.2) that fixes the position of mechanical products in physical space and their connections to other types of equipment and systems according to design specification. - **3.8.82 item:** any part, component, subsystem, functional unit, equipment, or system of a ship that can be individually considered. The item refers to all the mechanical, electrical, structural, and other physical elements as well as non-physical aspects such as features and so on. - **3.8.83 life cycle status**: the product data that specify where in its lifecycle the product is. - **3.8.84 liquid impurity:** any type of liquid, at low concentrations, that is part of the composition of a liquid, normally with some harmful effect on the use of the liquid for a specific purpose. - **3.8.85** log: a structured record capturing specified sets of information at given ship events (see 3.8.61) or at specified time intervals. Deck and engine logs are normally required by law. - **3.8.86 lube oil system:** a piping system (see 3.8.114) for supplying lubricant at the desired temperature and pressure and flowrate to equipment (see 3.8.586) that requires lubrication. - **3.8.87 lubrication oil:** an oil derivative liquid that is used mainly for the machinery lubrication. - **3.8.88 machinery:** a reciprocating or rotating equipment that performs some sort of energy conversion as its underlying function. - **3.8.89** main equipment: an equipment (see 3.8.58) that provides the main function in a given system. - **3.8.90 main propulsion system:** a propulsion system (see 3.8.126) used to achieve the main ship forward motion. - **3.8.91** main system: a system (see 3.8.154) that provides the main function (see 3.8.92). - **3.8.92** main function: the primary role with reference to a function (see 3.8.70). - **3.8.93 maintain:** an activity in which a pre-defined set of tasks are carried out on mechanical products in order to keep them in proper condition. - **3.8.94 maintenance planning:** the function (see 3.8.70) by which the maintenance of a mechanical product is planned. - **3.8.95** manoeuvring propulsion system: a propulsion system (see 3.8.126) used to carry out the ship manoeuvring in port and in emergency situations. - **3.8.96 manoeuvring system:** a system (see 3.8.154) used to perform planned movement or change from the straight, steady course and speed of a ship or to maintain the vessel in a given stationary location and heading. - **3.8.97 material:** the substance or substances from which a mechanical product or any other physical item is made. - **3.8.98** mechanical component: a component (see 3.8.25) with a primary mechanical function. - **3.8.99 mechanical connector:** a connector (see 3.8.35) that is primarily used for connecting mechanical equipments together. - **3.8.100 mechanical equipment:** a non-machinery equipment that is primarily used in mechanical systems. Gear boxes and couplings are examples of mechanical equipment. - **3.8.101 mechanical machinery:** a machinery (see 3.8.88) that is primarily used in mechanical systems. All kinds of reciprocating and rotary engines are examples of mechanical machinery. - **3.8.102** mechanical power transmission: the function (see 3.8.70) of transmitting mechanical power from one point to another point. - **3.8.103** mechanical product: any item (see 3.8.82) of the ship mechanical systems that is realisable as a physical thing. A mechanical product has both physical and functional properties. - **3.8.104** mechanical system: a system (see 3.8.154) that is within the scope (see 1) of this part of ISO 10303. - **3.8.105** mechanical transmission system: a system (see 3.8.154) by which motive power from the prime mover is made available and matched to load. Shafting system connecting main engine to propeller, or shafting system connecting auxiliary engine to electric generators are examples of mechanical transmission systems. - **3.8.106 members of composition:** those mechanical products that appear at the first
decomposition level of the decomposition hierarchy (see 3.8.42). The members of composition within this part of ISO 10303 are those specified in Annex M. - **3.8.107 metallic impurity:** any type of trace metal that is part of the composition of a liquid, normally with some harmful effect on the use of the liquid for a specific purpose. - **3.8.108 mounting:** a connection (see 3.8.34), rigid or flexible, between an equipment (see 3.8.58) and the ship's structure. - **3.8.109** operate: an activity that controls the functioning of a mechanical product. - **3.8.110** part: any mechanical product at atomic (lowest composition) the level. - **3.8.111 physical:** a reference term which refers to shape and material characteristics such as weight, size, and location of the mechanical product. - **3.8.112 piping connector:** a connector (see 3.8.35) that is primarily used in a piping system for connecting piping equipment or piping parts to each other. - **3.8.113 piping equipment:** a non-machinery equipment that is primarily used in a piping system. Valves are examples of piping equipment. - **3.8.114 piping system:** a system (see 3.8.154) composed of pipes, valves, pumps/compressors, and so on with the main function of transporting and distributing fluids. - **3.8.115 plan:** any type of dimensional drawing of a mechanical product. - **3.8.116 podded drive propulsor:** a type of azimuth thruster (see 3.8.12) consisting of a propulsor, driven from a dedicated prime mover or a pump-jet type propulsor (see 3.8.130). - **3.8.117 port:** a type of connector (see 3.8.35) that enables a flow of energy, load, process material or signal to or from another mechanical product. - **3.8.118 power generation:** the function (see 3.8.70) that converts fuel energy into electrical or mechanical energy. - **3.8.119 power system:** a system (see 3.8.154) that supplies mechanical energy for the operation of another system. - **3.8.120 prime mover:** a type of machinery that converts natural source of energy into mechanical power. - **3.8.121 process equipment:** an equipment (see 3.8.58) that is primarily used in a process plant for carrying out certain processes. Heat exchangers, filters and purifiers are examples of process equipment. - **3.8.122 procure:** an activity (see 3.8.2) by which a specified mechanical product is acquired. - **3.8.123 product configuration:** a data specification that defines the configuration (see 3.8.32) of a mechanical product for the purpose of managing/controlling current status and historical changes of the product. - **3.8.124 product connectivity:** a data specification that defines all aspects of product connections (see 3.8.34) in relation to external systems and equipments. - **3.8.125 product structure:** a data specification that defines the following in relation to a mechanical product: i) the system for which the mechanical product is a part, ii) the items that are part of the mechanical product, and iii) the position and location of a mechanical product. - **3.8.126 propulsion system:** a system (see 3.8.154) that produces the required ship momentum for its forward movement by influencing the velocity of the fluid passing through the propulsor (see 3.8.128). - **3.8.127 propulsion:** the function (see 3.8.70) that produces the required thrust for ship movement using fuel energy. - **3.8.128 propulsor:** a powered equipment that sets up a thrust on the water to enable a ship to move in a controlled direction. Propeller is an example of a propulsor. - **3.8.129 pump:** a rotating or reciprocating machinery that converts mechanical energy into fluid energy in the form of higher fluid pressure. - **3.8.130 pump-jet propulsor:** a pump system that accelerates large volumes of water, drawn in from beneath the ship, and expels it as a high speed horizontal jet, setting up a sufficient reaction force to propel the ship. The pump impeller is mounted with a vertical axis. - **3.8.131 reliability, availability and maintainability (RAM) analysis:** an engineering analysis (see 3.8.56) activity with the objective of defining the RAM characteristic of mechanical products. - **3.8.132 reliability, availability and maintainability (RAM) characteristics:** a set of product-related properties that specifies the reliability, availability and maintainability properties of a product. - **3.8.133 reciprocating machinery:** a machinery (see 3.8.88) that works according to reciprocating motion. - **3.8.134 rotating machinery:** a machinery (see 3.8.88) that works according to rotating motion. - **3.8.135 schematic presentation:** a type of drawing that conveys information about relationships among things by the relative physical position of symbols. - **3.8.136 screw propeller:** a revolving boss with blades that are usually set at an angle and twisted like the threads of a screw. When the propeller is rotated in the water, a column of water passes through it, gaining momentum. The reactive force which arises is taken up by the thrust bearing in the transmission system, enabling the ship to move. - **3.8.137 sediments:** all types of solid impurities of a liquid that normally settle to the bottom of the container of liquid. - **3.8.138** shaft bearing: a mechanical component (see 3.8.25) for supporting shaft radial or axial load. - **3.8.139 shaft:** a beam (usually of circular section) transmitting torque between the prime mover and the load. A shaft may be part of a series of shafts as in a ship's main propulsion shafting system between prime mover and propeller. - **3.8.140 ship mechanical system:** a mechanical system (see 3.8.104) that provides or performs, or is intended to provide or perform, a service or function contributing to or enabling the operation of a ship. - **3.8.141 ship mooring system:** a system (see 3.8.154) whose main function is to secure a ship in open water. - **3.8.142 ship operation:** all activities required by ship operator and onboard crew to enable the intended services of the ship. In this application protocol the main emphasis is on the technical part of the ship operation. The ship operation phase within the ship lifecycle starts when the ship is commissioned and ends when the ship is scrapped. - **3.8.143 silencer:** an equipment (see 3.8.58) used to reduce the noise emanating from the engine. - **3.8.144 solid model:** a geometric representation of a mechanical product and deals mainly with external geometries including shape, volume, area and so on. - **3.8.145** spatial arrangements: the location, orientation and relative position of the components of a mechanical system. - **3.8.146** steam generation system: a system (see 3.8.154) that converts water into steam. - **3.8.147 steam generation:** the function (see 3.8.70) of converting water into steam. - **3.8.148 steam power system:** a power system (see 3.8.119) with a steam turbine (see 3.8.149) as prime mover. - **3.8.149 steam turbine:** a turbine with steam as working fluid. - **3.8.150 steering mechanism:** a system (see 3.8.154) that provides the means of manoeuvring the ship under normal service conditions. - **3.8.151 supercharger:** a mechanically driven centrifugal air compressor used to increase the induction pressure in an internal combustion engine. - **3.8.152 survey planning:** the function (see 3.8.70) by which the survey of mechanical product is planned. - **3.8.153 survey:** the activity of examining one or more mechanical products in order to appraise their condition as being fit for purpose. - **3.8.154 system:** an assembly of one or more items (see 3.8.82), with functional and physical relationships between them, that performs or can perform a clearly identified function (see 3.8.70) as a whole. A system may have both physical and functional properties. - **3.8.155 task:** anything that is carried out by a human on a mechanical product or in relation to a mechanical product. Each task has a clear beginning and ending. - **3.8.156 time based maintenance:** the maintenance to be carried out at predetermined intervals intended to reduce the probability of failure or the degradation of an item. - **3.8.157 transmission (electrical, mechanical, hydraulic):** the function (see 3.8.70) that transfers (electrical, mechanical, hydraulic) power from one location to another. - **3.8.158 tunnel thruster:** a propulsor (see 3.8.128) consisting of a propeller mounted in a fixed tunnel in the ship's structure. Normally used as auxiliary thrust units and are provided to facilitate manoeuvres in tight waters. Bow thruster units on a ferry are examples of tunnel thruster. - **3.8.159 turbine:** a rotating machinery (see 3.8.134) that converts the internal energy of a fluid into mechanical energy. - **3.8.160 turbocharger:** a centrifugal air compressor driven by a gas turbine used to increase the induction pressure in an internal combustion engine. - **3.8.161 water-jet propulsor:** a machinery that takes in water by means of a suitable inlet and ducting system and accelerates the mass of water using an impeller and nozzle to form a jet propulsion system. The impeller is mounted with a horizontal axis. ### 3.9 Abbreviations For the purposes of this Part of ISO 10303, the following abbreviations apply. AAM application activity model AIM application interpreted model #### 13U/WD 10303-440(E) AP application protocol BMEP brake mean effective pressure BSFC brake specific fuel consumption CAD computer aided design CFD computational fluid dynamics FEA finite element analysis IDEF0 ICAM definition language IMEP indicated mean effective pressure MP mechanical product PICS protocol implementation conformance statement RAM reliability, availability and maintainability SI Système International UoF units of functionality ## 4 Information requirements This clause specifies the information required for the exchange of ship's mechanical systems data. The information requirements are specified as a set of units of functionality,
application objects, and application assertions. These assertions pertain to individual application objects and to relationships between application objects. The information requirements are defined using the terminology of the subject area of this application protocol. #### **NOTES** - 1 A graphical representation of the information requirements is given in annex G. - 2 The information requirements correspond to those of the activities identified as being in the scope of this application protocol in annex F. - 3 The mapping table is specified in 5.1 which shows how the information requirements are met using the integrated resources of this International Standard. The use of the integrated resources introduces additional requirements which are common to all application protocols. # 4.1 Units of functionality This subclause specifies the units of functionality for the Ship's Mechanical Systems application protocol. This Part of ISO 10303 specifies the following units of functionality: - configuration_definitions; - cranes; - diesel engines; - external_references; - gas material properties; - lifting_equipments; - liquid_material_properties; - local co ordinate systems; - machineries; - maintenance tasks; - measure_with_units; - mechanical_machineries; - mechanical_product_anomalies; - mechanical_product_components; - mechanical product connections; - mechanical_product_definitions; - mechanical_product_equipments; - mechanical product general characteristics; - mechanical_product_representations; - mechanical_product_structures; - mechanical_product_systems; - mechanical_products; - other equipments; - other_tasks; - part41_resources; | <pre>— part42_resources;</pre> | |--------------------------------| | — RAM_characteristics; | | — reciprocating_machineries; | | <pre>— screw_propellers;</pre> | | — ships; | | — solid_material_properties; | | <pre>— task_definitions;</pre> | | — tasks; | | — time_and_events. | The units of functionality and a description of the functions that each UoF supports are given below. The application objects included in the UoFs are defined in clause 4.2. # 4.1.1 configuration_definitions The configuration_definitions UoF specifies the concepts for keeping high level records and information relating to product identification and its usage context. Concepts such as associating the product to contracts/projects and assigning the ownership of product are supported. The configuration_definitions UoF also supports the life cycle identification of a mechanical product and whether a mechanical product represents a conceptual, designed, planned or a real thing. #### **NOTES** - 1 Product configuration (see 3.8.123) is independent of its definitions' configuration (see 3.8.44). However, it may reference data relating to definitions' configuration. - 2 The tracking of mechanical product status within its lifecycle is within the scope of this UoF. - 3 The concepts required to uniquely identify a mechanical product and its classification are out of scope of this UoF. - 4 The concepts required to support configuration management activities such as versioning, change control and approval of version or change are out of scope of this UoF. The following application objects are used by the configuration_definitions UoF: - Configuration_definition;Product_context;Product_identification; - Product status. #### **4.1.2** cranes The cranes UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a crane. #### **NOTES** - 1 This UoF inherits all the generic crane-related definitions. - 2 This UoF is always used in connection with other UoFs which associate description, approval details, identification data and other definitions to cranes. - 3 The information on systems, equipments and components which are part of a crane is outside the scope of this UOF. The following application objects are used by the cranes UoF: - Crane; - Crane_ambient_condition; - Crane_composition; - Crane_design_characteristic; - Crane_general_characteristic; - Crane_load_characteristic; - Crane_overall_dimension; - Crane_stability_data; # 4.1.3 diesel_engines The diesel_engines UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a diesel engine. #### **NOTES** - 1 This UoF inherits all the generic diesel engine related definitions. - 2 This UoF is always used in connection with other UoFs which associate description, approval details, identification data and other definitions to diesel engines. - 3 The information on systems, equipments and components which are part of a diesel engine is out of scope of this UoF. The following application objects are used by the diesel_engines UoF: - Diesel_engine; - Diesel_engine_design_ characteristic; - Diesel engine general characteristic; - Diesel_engine_operational_characteristic; - Exhaust_emission; - Fluid_operational_data. ### 4.1.4 external_references The external_references UoF specifies an external reference mechanism to assign additional documentation in electronic or non-electronic form to the product, task/activity or definitions. The external_references UoF also facilitates access to information, standard or non-standard, on ship mechanical systems that are outside the scope of this part of ISO 103030. #### **NOTES** - 1 All types of user manuals, computer files, catalogues, reports, books and so on are considered as external documents and are in the scope of this UoF. - 2 The referencing of external databases and data libraries, standard or non-standard, are in the scope of this UoF. The following application objects are used by the external_references UoF: - Document; - Document reference; - External_instance_reference; - External_mechanical_product_definition; - External_reference; - External_reference_inside_source; - GUID. # 4.1.5 gas_material_properties The gas_material_properties UoF specifies the framework for grouping of the gas properties into physical, chemical and other types of properties and their association to a gaseous material. #### **NOTES** - 1 The reference pressure and temperature for gas properties are specified in this UoF. - 2 The scope of this UoF covers gaseous fuels, gaseous working fluids and gaseous ambient conditions. The following application objects are used by the gas_material_properties UoF: - Gas_chemical_property; - Gas_material_property; - Gas_physical_property. ## 4.1.6 lifting_equipments The lifting_equipments UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a lifting equipment. #### NOTES - 1 This UoF inherits all the lifting equipment related generic definitions. . - 2 This UoF is always used in association with other UoFs which associate description, approval details, identification data and other definitions to lifting equipments. The following application objects are used by the lifting_equipments UoF: - Lifting_equipment; - Lifting_equipment_design_characteristic. # 4.1.7 liquid_material_properties The liquid_material_properties UoF specifies the framework for grouping of the liquid properties into physical, chemical and other types of properties and their association to a liquid material. #### NOTES - 1 The reference pressure and temperature for liquid properties are specified in this UoF. - 2 The scope of this UoF covers liquid fuels, liquid working fluids and liquid ambient conditions. The following application objects are used by the liquid_material_properties UoF: - Liquid_chemical_property; - Liquid_fluid_impurity; - Liquid_impurity; - Liquid_material_property; - Liquid_physical_property; - Material_property; - Metallic_impurity. ### 4.1.8 local_co_ordinate_systems The local_co_ordinate_systems UoF specifies location of a mechanical product within the coordinate system. The following application objects are used by the local co ordinate systems UoF: — Local_co_ordinate_system. #### 4.1.9 machineries The machineries UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a machinery (see 3.8.88). #### **NOTES** - 1 This UoF inherits all the machinery-related generic definitions. - 2 This UoF is always used in connection with other UoFs which associate description, approval details, identification data and other definitions to a machinery. The following application objects are used by the machineries UoF: - Machinery; - Machinery_ambient_condition; - Machinery_design_characteristic; - Machinery_general_characteristic; - Machinery_operational_characteristic; - Operating_point. # 4.1.10 maintenance_tasks The maintenance_tasks UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a maintenance task. #### **NOTES** - 1 This UoF inherits all the maintenance task related definitions. - 2 This UoF is always used in association with generic task related UoFs which associate description, approval details, identification data and other definitions to a maintenance task. The following application objects are used by the maintenance tasks UoF: - Maintenance_configuration_data; - Maintenance_human_resource; - Maintenance_procedure; - Maintenance_result; - Maintenance_schedule; - Maintenance_spare_part; - Maintenance_task; - Maintenance-tool. # 4.1.11 measure_with_units The measure_with_units UoF specifies the concept for representing measures for physical quantities together with their units. The following application objects are used by the measure_with_units UoF: - Density; - Dilatation; - Energy_per_mass; - Heat_capacity; - Inertia_moment; - Length; - Mass; - Measure_with_unit; - Plane angle; - Power: - Pressure; - Ratio: - Rotational_speed; - Speed; - Stress: - Surface_tension; - Temperature; - Thermal_conductivity; - Time; - Torque; - Viscosity. ## 4.1.12 mechanical_machineries The mechanical_machineries UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a mechanical machinery (see 3.8.101). #### **NOTES** - 1 This UoF inherits all the mechanical machinery
related definitions. - 2 This UoF is always used in association with other UoFs which associate description, approval details, identification data and other definitions to a mechanical machinery. The following application objects are used by the mechanical_machineries UoF: - Mechanical_machinery; - Mechanical_machinery_composition; - Mechanical_machinery_identification; - Rotating_machinery. ## 4.1.13 mechanical_product_anomalies The mechanical_product_anomalies UoF specifies the concept and framework for type hierarchy and grouping of different types of engineering information relating to product anomaly (see 3.8.6). #### **NOTES** - 1 The definition of tasks in order to rectify the product anomaly is outside the scope of this UoF: - 2 The classification and identification of type of anomaly are within the scope of this UoF. The following application objects are used by the mechanical_product_anomalies UoF; - Design anomaly; - Failure: - Failure effect; - Fault: - Product anomaly. ## 4.1.14 mechanical_product_components The mechanical_product_components UoF specifies the concept for defining the type hierarchy and classification of the mechanical components not defined in other UoFs. #### **NOTES** - 1 This UoF does not provide any extra information about the mechanical components other than their existence and type of component. - 2 This UoF is always used in connection with other UoFs which associate description, approval, identification data and other definitions to a mechanical component. The following application objects are used by the mechanical_product_components UoF: - Bearing; - Bedplate; - Bolt; - Connecting_component; - Connector_component; - Mechanical_component; - Mechanical_product_component; - Piping_component; - Pipe; - Piping_component; - Piston; - Rotating_component; - Shaft; — Structural_connector. ## **4.1.15** mechanical_product_connections The mechanical_product_connections UoF specifies the concept for defining the physical connections between mechanical products. #### **NOTES** - 1 This UoF is used to specify the type of connection as well as the engineering specifications for the connection. - 2 Identification of all the mechanical products which take part in realising the physical connection is in the scope of this UoF. The following application objects are used by the mechanical_product_connections UoF: - Connection_characteristic; - Connection_specification; - Electrical_connection; - Mechanical_connection; - Mechanical_product_connection; - Piping_connection; - Product connection; - Structural_connection. ## 4.1.16 mechanical_product_definitions The mechanical_product_definitions UoF specifies the high level concept and framework for type hierarchy and grouping of all the engineering information (descriptions and properties) which are attributable to mechanical products. #### **NOTES** - 1 The information in the form of documentation is within the scope of this UoF. - 2 The information on identifying a mechanical product, its structure and its configuration are outside the scope of this UoF. - 3 The product data and information needed in support of or resulting from lifecycle engineering activities and tasks, carried out in relation to mechanical products, are outside the scope of this UoF. The following application objects are used by the mechanical_product_definitions UoF: - Ambient_condition; Definition; Design_characteristic; Engineering_analysis_definition; Functional_characteristic; Functional_definition; - Gas: - Geometric_definition; - Liquid; - Mass_weight_inertia; - Operational_characteristic; - Overall_dimension; - Physical_definition; - Product material; - Tolerance. # 4.1.17 mechanical_product_equipments The mechanical_product_equipments specifies the high-level concept for representing the generic class of equipment (see 3.8.58) and association of the relevant definitions (see 3.8.43) to this class. #### **NOTES** - 1 This UoF is always used in connection with other UoFs which associates definitions to equipment. - 2 This UoF is used by all subtypes of equipment. The following application objects are used by the mechanical product equipments UoF: - MP equipment general characteristic; - MP_equipment_identification; - MP_equipment. ## 4.1.18 mechanical_product_general_characteristics The mechanical_product_general_characteristics UoF specifies the concept for collecting all the information which are attributable to general characteristics (see 3.8.77) of a mechanical product. #### **NOTES** - 1 This UoF collects and references general data which are defined in other UoFs. - 2 This UoF is always used in connection with other UoFs. The following application objects are used by the mechanical product general characteristics UoF: — Mechanical product general characteristic. # 4.1.19 mechanical_product_representations The mechanical_product_representations UoF specifies the concept for the representation of mechanical product's detailed geometric definitions in the form of shape representation (solid model) and drawing. The mechanical_product_representations UoF also facilitates the exchange of identification information on drawings, in addition to the exchange of drawing itself. #### **NOTES** - 1 Definition of the internal geometry of mechanical products is outside the scope of this UoF. - 2 Information on drawings for identification purposes and association of a drawing to a mechanical product is within the scope of this UoF. The following application objects are used by the mechanical_product_representations UoF: - Approval_details; - Drawing_configuration; - Mechanical_product_drawing; - Mechanical_product_representation; - Mechanical_product_shape_representation. ## 4.1.20 mechanical_product_structures The mechanical_product_structures UoF defines the internal composition (see 3.8.26), external participation (being part of something else), connectivity, position and orientation of mechanical products. The mechanical_product_structures UoF provides the ability to exchange description of the position of a mechanical product and its arrangement. #### **NOTES** - 1 This UoF is always used in conjunction with the mechanical_products UoF for which composition, participation, connectivity and placement need to be defined. - 2 The placement and position of the mechanical product may be something such as a compartment or side of a ship. - 3 The precise position of the mechanical products in terms of ship co-ordinate system is within the scope of this UoF. - 4 The composition of mechanical products will be supported in terms of mechanical product hierarchical decomposition, as developed and documented within this part of ISO 10303 (see Annex M). - 5 The connectivity of mechanical product to its boundary mechanical products and ship structures are facilitated by inclusion of connectors (see 3.8.35) within the internal composition of mechanical products. However, the definition of a physical connection (see 3.8.34) is outside the scope of this UoF and is supported by the mechanical product connections UoF (see 4.1.15). The following application objects are used by the mechanical_product_structures UoF: - Product_assembly; - Product composition; - Product connectivity; - Product_participation; - Product_placement; - Product_structure_definition; - Ship_space; # 4.1.21 mechanical_product_systems The mechanical_product_systems UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a mechanical system (see 3.8.104). #### **NOTES** 1 - This UoF inherits all the generic system's related definitions. 2 - This UoF is always used in association with other UoFs which associate description, approval details, identification data and other definitions to a mechanical system. The following application objects are used by the mechanical_product_systems UoF: - Control_and_monitoring_system; - Electrical_system; - Manoeuvring_system; - Mechanical_system; - Mechanical_transmission_system; - MP_piping_system; - -- Propulsion_system; - —Steam_generation_system. ### 4.1.22 mechanical_products The mechanical_products UoF specifies the high level concept for defining the type hierarchy and classification of mechanical products (see 3.8.103) in a compatible way to other ship APs. #### **NOTES** - 1 This UoF does not provide any extra information about the mechanical product other than its existence, context within which it is used and its functionality. - 2 This UoF is always used in connection with other UoFs which associate description, approval, identification data and other definitions to a mechanical product. The following application objects are used by the mechanical_products UoF: - Definable_object; - Item: - Item_relationship; - Item_structure; - Mechanical_product; - Mechanical_product_relationship. # 4.1.23 other_equipments The other_equipments UoF specifies the concept for defining the type hierarchy and classification of those equipments (see 3.8.58) which have not been defined in other UoFs. #### **NOTES** - 1 This UoF does not provide any extra information about the mechanical equipments other than their existence and type of equipment. - 2 This UoF is always used in connection with other UoFs which associate description, approval, identification data and other definitions to the mechanical equipments UoF. The following application objects are used by the other_equipments UoF. - Analyser; - Control_equipment; - Coupling; Electrical_equipment; Gear_box; Heat_exchanger; Mechanical_equipment; - Piping_equipment; - Process_equipment; - Transformer; - Valve. ## 4.1.24 other_tasks The other_tasks UoF specifies the concept for defining the high-level information relating to tasks (see 3.8.155) which have not been defined in other UoFs. #### **NOTES** - 1 This UoF does not provide any extra information about a task other than its existence and its type. - 2 This UoF is normally used in connection with other task-related UoFs which associate description, approval
data and other definitions to the tasks. The following application objects are used by the other_tasks UoF: - Analysis_task; - Design_task; - Operation_task; - Other_task; - Survey_inspection_task. # 4.1.25 part41_resources The part41_resources UoF specifies all the application objects which are in ISO10303-41 and are used by this part of ISO 10303. The following application objects are used by the part41_resources UoF: | — Address; | | |------------|--| | — Date; | | | - | | - Date_and_time; - Label; - Organization; - Organizational_project; - Person; - Person_and_organization; - Text. # 4.1.26 part42_resources The part42_resources UoF specifies all the application objects which are in ISO10303-42 and are used by this part of ISO 10303. The following application objects are used by the part42_resources UoF: - Cartesian_point; - Direction; - Geometric_representation_item; - Solid_model; - Vector. #### 4.1.27 RAM characteristics The RAM_characteristics UoF specifies the concept for collecting the data and information relating to mechanical product's RAM characteristics (see 3.8.132). #### **NOTES** - 1 The procedures for calculating or recording the RAM-related data are outside the scope of this UoF. - 2 This UoF is closely related to product_anomalies UoF. The following application objects are used by the RAM_characteristics UoF: - Availability; - Maintainability; - RAM_characteristic; - Reliability. # 4.1.28 reciprocating_machineries The reciprocating_machineries UoF specifies the concept for associating the relevant definitions (see 3.8.43) to a reciprocating machinery (see 3.8.133). #### **NOTES** - 1. This UoF inherits all the reciprocating machinery related generic definitions. - 2. This UoF is always used in association with other UoFs which associate description, approval details, identification data and other definitions to a reciprocating machinery. The following application objects are used by the reciprocating_machineries UoF: - Reciprocating_machinery; - Reciprocating_machinery_composition; - Reciprocating_machinery_general_characteristic; - Reciprocating_machinery_overall_dimension. # 4.1.29 screw_propellers The screw_propellers UoF specifies the concept for associating the relevant definitions (see 3.8.43) to screw propellers (see 3.8.136). #### **NOTES** - 1 This UoF inherits all the screw propeller related generic definitions. - 2 This UoF is always used in connection with other UoFs which associate description, approval details, identification data and other definitions to screw propellers . - 3 The information on systems, equipments and components which are part of a screw propeller is outside the scope of this UoF. The following application objects are used by the screw_propellers UoF: - Power_speed_pitch_point; - Screw_propeller; - Screw_propeller_composition; - Screw_propeller_design_characteristic; - Screw_propeller_general_characteristic; - Screw_propeller_mass_weight_inertia; - Screw_propeller_operational_characteristic; - Screw_propeller_overall_dimension. ## 4.1.30 ships The ships UoF specifies the information required to describe the ship. All ship product data are defined independent of the ship and have a reference to it. The ships UoF describes the essential information to permit that reference. This UoF is common to ship related application protocols. The following application objects are used by the ships UoF: — Ship. # 4.1.31 solid_material_ properties The solid_material_properties UoF specifies the material properties and their association to a solid material. The following application objects are used by the solid material properties UoF: - Element_content; - Solid_material_property. #### 4.1.32 task definitions The task_definitions UoF specifies the high level concept and framework for type hierarchy and grouping of all the data and information which are attributable to tasks (see 3.8.155). #### **NOTES** 1 - The information in the form of documentation is in the scope of this UoF. 2 - The information relating to task configuration, procedures, schedules and required resources are in the scope of this UoF. The following application objects are used by the task_definitions UoF: - Human resource; - Spare_part; - Task_approval; - Task_configuration; - Task_definition; - Task_other_definition; - Task_other_resource; - Task_procedure; - Task_resource; - Task_result; - Task schedule; - Tool. #### 4.1.33 tasks The tasks UoF specifies the concept for defining the high-level information relating to tasks (see 3.8.155). Concepts for relating tasks to each other and identification of major aspects of relationship are also supported by the tasks UoF. #### **NOTES** - 1 This UoF does not provide any extra information about a task other than its existence, its identification and the identification of the mechanical products which the task relates to. - 2 This UoF is normally used in connection with other task-related UoFs which associate description, approval and definitions to the tasks. The following application objects are used by the tasks UoF: - Task; - Task_relationship. #### 4.1.34 time and events The time_and_events UoF specifies the concept for describing the events and their authorisation and approval. All the events which take place during the various stages of ship life cycle are in the scope of the time_and_events UoF The following application objects are used by the time_and_events UoF: - Approval_event; - Event; - Time_period; - Time_schedule. # 4.2 Application Objects This subclause specifies the application objects for the ship mechanical systems application protocol. Each application object is an atomic element that embodies a unique application concept and contains attributes specifying the data elements of the object. The application objects and their definitions are given below. #### 4.2.1 Address An Address specifies postal data associated with a person or organisation. It is used as defined in ISO 10303-41. ### 4.2.2 Ambient_condition An Ambient_condition specifies and collects data relating to the ambient conditions of a mechanical product. The data associated with an Ambient_condition are the following: - ambient fluid; - ambient_pressure; - ambient_temperature; - defined for; - environment. #### 4.2.2.1 ambient fluid The ambient_fluid attribute specifies the type of the ambient fluid for the mechanical product. An ambient_fluid can be either a Gas (see 4.2.62) or a Liquid (see 4.2.81). # 4.2.2.2 ambient_pressure The ambient_pressure attribute specifies the pressure of the ambient fluid. # 4.2.2.3 ambient_temperature The ambient_temperature attribute specifies the temperature of the ambient fluid. #### 4.2.2.4 defined_for The defined_for attribute specifies a set of one to many mechanical products for which ambient condition data are defined. #### 4.2.2.5 environment The environment attribute specifies and describes the major aspects of the environment within which a mechanical product operates. # 4.2.3 Analyser An Analyser is a type of Control_equipment (see 4.2.18) and specifies the data representation concept for all the analysers which need to be defined. The data associated with an analyser are the following: ``` - analyser_type. ``` The analyser_type attribute specifies the type of analyser. ## 4.2.4 Analysis_task An Analysis_task is a type of Task (see 4.2.189) and specifies the concept for collecting data which are attributable to an analysis task. The data associated with an Analysis_task are the following: ``` - type_of_task. ``` The type_of_task attribute specifies the type of analysis task in a text format. # 4.2.5 Approval_details The Approval_details is a type of Approval_event (see 4.2.6) and specifies the approval information for a drawing. # 4.2.6 Approval_event An Approval_event is a type of Event (see 4.2.50) and specifies an approval or authorisation event. The data associated with an Approval_event are the following: - result. The result attribute specifies the approval status the event leads to. The value of result shall be one of the following: - approved; - noted; - rejected; - unapproved. - **4.2.6.1** approved: a version of the Definition has been approved for use in a later lifecycle phase. - **4.2.6.2 noted:** the need for an approval decision for a version of the Definition has been identified. - **4.2.6.3** rejected: the version of the Definition has been rejected for use in a later lifecycle phase. - **4.2.6.4 unapproved:** the approval status of a version of the Definition is in the process of being reviewed by the organization. # 4.2.7 Availability An Availability specifies the data which are attributable to availability performance of a mechanical product. The data associated with an Availability are the following: - duration_of_down-time; - duration_of_up_time; - mean_availability; - total_duration. ### 4.2.7.1 duration_of_down_time The duration_of_down_time attribute specifies the expected duration for an equipment to be in a downstate (see 3.7). ## 4.2.7.2 duration_of_up_time The duration_of_up_time attribute specifies the expected duration for an equipment to be in an upstate (see 3.7). # 4.2.7.3 mean_availability The mean_availability attribute specifies the mean availability (see 3.7) for an equipment. #### 4.2.7.4 total duration The total_duration attribute specifies the total duration of time for which availability performance information is specified. # 4.2.8 Bearing A Bearing is a type of Mechanical_component (see 4.2.105) which specifies the high level concept for all the bearings which need to be defined or described. The data associated with a Bearing are the following: - bearing type The bearing_type attribute specifies the type of bearing. The value of bearing_type shall be one of the following: - big_end_bearing; - shaft_bearing; - small_end_bearing; - user_defined_bearing_type. - **4.2.8.1 big _end_bearing:** the descriptor which specifies that the bearing is a big end bearing of a diesel engine. - **4.2.8.2
shaft_bearing:** the descriptor which specifies that the bearing is of type shaft bearing. - **4.2.8.3 small_end_bearing:** the descriptor which specifies that the bearing is of type small end bearing. - **4.2.8.4 user_defined_bearing_type:** the descriptor, set by the user, which specifies the type of bearing if different from the other options. ## 4.2.9 Bedplate A Bedplate is a type of Structural_connector (see 4.2.186) and specifies the data representation concept for all the bedplates which need to be defined. The data associated with a Bedplate are the following: bedplate_type. The bedplate_type attribute specifies the type of bedplate in text format. #### 4.2.10 Bolt A Bolt is a type of Connecting_component (see 4.2.13) which specifies the data representation concept for all the bolts which need to be defined. The data associated with a Bolt are the following: bolt_type. The bolt type attribute specifies the type of bolt in text format. ## 4.2.11 Cartesian_point A Cartesian_point specifies a point defined by its coordinates in a rectangular Cartesian coordinate system, or in a parameter space. The entity is defined in a one, two or three-dimensional space as determined by the number of coordinates in the list. It is used as defined in ISO 10303-42. # 4.2.12 Configuration_definition A Configuration_definition is a type of Definition (see 4.2.30) and specifies the data relating to the configuration (see 3.8.32) of a mechanical product. The data associated with a Configuration_definition are the following: - configuration_id The configuration_id attribute specifies the identification of the mechanical product configuration in the form of a label. ## 4.2.13 Connecting_component A Connecting_component is a type of Mechanical_product_component (see 4.2.112) and specifies the high level data representation concept for all types of connecting components (see 3.8.33) which need to be defined. The data associated with a Connecting component are the following: connecting_component_type; The connecting_component_type attribute specifies the type of the connecting component. The value of the connecting_component shall be one of the following: - bolt; - chock; - nut; - pin; - rod: - seal; - $-user_defined_connecting_component.$ - **4.2.13.1 bolt:** the descriptor which specifies that the connecting component is of type bolt. - **4.2.13.2 chock:** the descriptor which specifies that the connecting component is of type chock. - **4.2.13.3 nut:** the descriptor which specifies that the connecting component is of type nut. - **4.2.13.4 pin:** the descriptor which specifies that the connecting component is of type pin. - **4.2.13.5** rod: the descriptor which specifies that the connecting component is of type rod. - **4.2.13.6** seal: the descriptor which specifies that the connecting component is of type seal. - **4.2.13.7 user_defined_connecting_component:** the descriptor, set by the user, which specifies the type of the connecting component if different from the other options. #### 4.2.14 Connection_characteristic A Connection_characteristic specifies all the information which defines the functional and operational characteristics of a connection (see 3.8.34). The data associated with a Connection_characteristic are the following: - connection functional characteristics; - connection_operational_characteristics. #### 4.2.14.1 connection functional characteristics The connection_functional_characteristics attribute specifies all the information which relates to functional design aspects of a connection in the form of documents. ### 4.2.14.2 connection_operational_characteristics The connection_operational_characteristics attribute specifies all the information which relates to operational aspects of a connection in the form of documents. ### 4.2.15 Connection_specification A Connection_specification specifies all the information which relates to non-functional aspects of a connection (see 3.8.34) including manufacturing and installation aspects and geometric definitions. The data associated with a Connection_specification are the following: - connection_procedure; - engineering_definitions; - geometric_definitions. # 4.2.15.1 connection_procedure The connection_procedure attribute specifies the procedure for assembly, installation and disassembly of the connection in the form of reference to documents. # 4.2.15.2 engineering_definitions The engineering_definitions attribute specifies all the engineering data relating to the connection in the form of reference to documents. # 4.2.15.3 geometric_definitions The geometric_definitions attribute specifies details of geometric specifications including dimensional drawings in the form of reference to documents. # 4.2.16 Connector_component A Connector_component is a type of Mechanical_product_component (see 4.2.112) that specifies the high level concept for data representation for all the connectors (see 3.8.35) which need to be defined. The data associated with a Connector_component are the following: connector_component_type. The connector component type attribute specifies the type of connector component. The value of the connector_component_type shall be one of the following: - electrical connector; - mechanical_connector; - piping_connector; - structural_connector; - user_defined_connector_type. - **4.2.16.1 electrical_connector:** the descriptor which specifies that the connector component is of type electrical connector. - **4.2.16.2** mechanical_connector: the descriptor which specifies that the connector component is of type mechanical connector. - **4.2.16.3 piping_connector:** the descriptor which specifies that the connector component is of type piping connector. - **4.2.16.4 structural_connector:** the descriptor which specifies that the connector component is of type structural connector. - **4.2.16.5** user_defined_connector_type: the descriptor, set be the user, which specifies the type of connector component if different from the other options. # 4.2.17 Control_and_monitoring_system A Control_and_monitoring_system is a type of Mechanical_system (see 4.2.119) which specifies the high level concept for all the control and monitoring systems (see 3.8.38) which need to be defined or described. The data associated with a Control and monitoring system are the following: - type_of. The type_of attribute specifies the type of control and monitoring system. # 4.2.18 Control_equipment A Control_equipment is a type of MP_equipment (see 4.2.122) which specifies the high level concept for all the control equipment (see 3.8.39) which needs to be defined. The data associated with a Control equipment are the following: – control_equipment_type. The control_equipment_type attribute specifies the type of control equipment. The value of the control_equipment_type shall be one of the following: - actuator; - analyser; - signal_conditioner; - user_defined. - **4.2.18.1** actuator: the descriptor which specifies the control equipment is an actuator. - **4.2.18.2** analyser: the descriptor which specifies that control equipment is an analyser. - **4.2.18.3 signal_conditioner:** the descriptor which specifies that control equipment is a signal_conditioner. - **4.2.18.4 user_defined:** the descriptor, set by the user, which specifies the type of control equipment if different from the other options. ## **4.2.19** Coupling A coupling is a type of Mechanical_equipment (see 4.2.107) and specifies the data representation concept for all the couplings which need to be defined. The data associated with a Coupling are the following: - coupling_type; The coupling_type attribute specifies the type of coupling in a text format. #### 4.2.20 Crane A Crane is a type of Lifting_equipment (see 4.2.79) and specifies the concept for all the cranes which need to be defined. The data associated with a Crane are the following: crane_type. The crane_type attribute specifies the type of crane. The value of crane_type shall be one of the following: - deck_crane; - user defined crane. - **4.2.20.1 deck_crane:** the descriptor which specifies that the crane is of type deck crane. - **4.2.20.2** user-defined_crane: the descriptor, set by the user, if type of crane is different from the other options. # 4.2.21 Crane_ambient_condition A Crane_ambient_condition is a type of Ambient_condition (see 4.2.2) and specifies the ambient conditions for a crane. The data associated with a Crane_ambient_condition are the following: ``` defined_for;wind_speed. ``` ### **4.2.21.1** defined_for The defined_for attribute specifies a set of one to many cranes for which the definitions are defined. ## **4.2.21.2** wind_speed The wind_speed attribute specifies the wind speed for which the crane has been designed. # 4.2.22 Crane_composition A Crane_composition is a type of Product_composition (see 4.2.148) and specifies the high level concept for all the product composition (see 3.8.26) data which are attributable to all types of cranes. The data associated with a Crane_composition are the following: ``` defined_for;equipment_list. ``` ## **4.2.22.1 defined_for** The defined_for attribute specifies a set of one to many cranes for which the definitions are defined. # 4.2.22.2 equipment_list The equipment_list attribute specifies the particulars of each equipment which is part of a crane. The equipment_list is a DERIVED parameter from higher level product structure definitions. # 4.2.23 Crane_design_characteristic A Crane_design_characteristic is a type of Lifting_equipment_design_characteristic (see 4.2.80) and specifies the functional design data which are attributable to all types of cranes. The data associated with a Crane_design_characteristic are the following: ``` braking_time;defined_for;hoisting_speed_1;hoisting_speed_2;hoisting_speed_3;lifting_height; ``` luffing_time; - slewing_speed_single; - slewing_speed_twin; - stability_data. ## 4.2.23.1 braking_time The braking_time attribute specifies the crane hoisting braking
time. ### **4.2.23.2** defined_for The defined_for attribute specifies a set of one to many cranes for which the definitions are defined. # 4.2.23.3 hoisting_speed_1 The hoisting_speed_1 attribute specifies the crane hoisting speed level 1. ### 4.2.23.4 hoisting_speed_2 The hoisting_speed_2 attribute specifies the crane hoisting speed level 2. # 4.2.23.5 hoisting_speed_3 The hoisting_speed_3 attribute specifies the crane hoisting speed level 3. # 4.2.23.6 lifting_height The lifting_height attribute specifies the crane's lifting height. # 4.2.23.7 luffing_time The luffing_time attribute specifies the crane luffing time for raising the jib from its minimum angle to its maximum angle. # 4.2.23.8 slewing_speed_single The slewing speed single attribute specifies the crane slewing speed for a single system. # 4.2.23.9 slewing_speed_twin The slewing_speed_twin attribute specifies the crane slewing speed for a twin system. # 4.2.23.10 stability_data The stability_data attribute specifies the crane-related stability data by referencing the Crane_stability_data (see 4.2.27) application object. # 4.2.24 Crane_general_characteristic A Crane_general_characteristic is a type of MP_equipment_general_characteristic (see 4.2.123) and specifies the high level concept for all the general characteristics data which are attributable to all types of cranes. The data associated with a Crane_general_characteristic are the following: - defined for; - jib_parking_arrangements. ### **4.2.24.1 defined_for** The defined_for attribute specifies a set of one to many cranes for which the definitions are defined. ## 4.2.24.2 jib_parking_arrangements The jib_parking_arrangements attribute specifies the parking arrangement for a jib when the crane is not in use. ## 4.2.25 Crane_load_characteristic A Crane_load_characteristic is a type of Engineering_analysis_definition (see 4.2.49) and specifies the principal forces/loads which act on a crane. The data associated with a Crane_load_characteristic are the following: - defined for; - forces_due_to_wind; - forces dynamic; - forces_ship_inclination; - loads_dead; - loads live; - loads_on_platform: - loads_snow_and_ice; ### **4.2.25.1** defined for The defined_for attribute specifies a set of one to many cranes for which the load characteristics are defined. ## 4.2.25.2 forces_due_to_wind The forces_due_to_wind attribute specifies the total force acting on the crane due to wind. # 4.2.25.3 forces_dynamic The forces dynamic attribute specifies the total force acting on the crane due to crane dynamics. # 4.2.25.4 forces_ship_inclination The forces_ship_inclination attribute specifies the total force acting on the crane due to the ship heel and trim. ### **4.2.25.5** loads_dead The loads_dead attribute specifies the total force acting on the crane due to the crane weight. ### **4.2.25.6** loads_live The loads_live attribute specifies the total force acting on the crane due to the hoisting load. ### 4.2.25.7 loads_on_platform The loads_on_platform attribute specifies the total force acting on the ship deck supporting the crane. ### 4.2.25.8 loads_snow_and_ice The loads_snow_and_ice attribute specifies the total expected maximum force due to snow and ice. ### 4.2.26 Crane overall dimension A Crane_overall_dimension is a type of Overall_dimension (see 4.2.132) and collects all the overall dimensions which are attributable to all types of cranes. The data associated with a Crane_overall_dimension are the following: - defined_for; - jib_angle_max; - jib_angle_min; - jib_radius_max; - jib radius min. ### **4.2.26.1 defined_for** The defined for attribute specifies a set of one to many cranes for which the definitions are defined. # **4.2.26.2 jib_angle_max** The jib_angle_max attribute specifies the maximum angle of elevation of the crane jib. # **4.2.26.3 jib_angle_min** The jib_angle_min attribute specifies the minimum angle of elevation of the crane jib. # 4.2.26.4 jib_radius_max The jib_radius_max attribute specifies the maximum radius of the crane jib from the slewing axis. ### 4.2.26.5 jib_radius_min The jib radius min attribute specifies the minimum radius of the crane jib. ### 4.2.27 Crane stability data A Crane stability data specifies the data which define the stability characteristics of a crane. The data associated with a Crane_stability_data are the following: - overturning_moment; - stability_moment. ### 4.2.27.1 overturning moment The overturning_moment attribute specifies the moment which causes crane overturning. ### 4.2.27.2 stability_moment The stability_moment attribute specifies the stability moment. ### 4.2.28 Date and time A Date_and_time specifies the combined calendar date and the day time. It is used as defined in ISO 10303-41. # 4.2.29 Definable_object A Definable_object is the supertype for all the objects which needs to be defined. The data associated with a Definable_object are the following: - definitions. The definitions attribute references a set of zero to many Definitions (see 4.2.30) which relate to a Definable_object. ### 4.2.30 Definition A Definition is the supertype for all kinds of product's definitions (see 3.8.43). Within this part of ISO 10303, each Definition is either a Physical_definition (see 4.2.135), a Functional_definition (see 4.2.61), a Configuration_definition (see 4.2.12), an Engineering_analysis_definition (see 4.2.49), a Product_anomaly (see 4.2.146), Mechanical_product_general_characteristic (see 4.2.115), or a Product_structure_definition (see 4.2.157). The data associated with a Definition are the following: - defined for; - local_units; - version id. #### **4.2.30.1 defined_for** The defined_for specifies the definable objects which are defined by Definition. There may be more than one defined_for for a Definition. #### **4.2.30.2 local_units** The local_units attribute specifies the units that Definition makes use of, if different from the ones globally defined for the ship. There may be more than one local_units for a Definition. ### **4.2.30.3** version_id The version_id provides simple version control. The version_id need not be specified for a particular Definition. # **4.2.31** Density A Density is a type of Measure_with_unit (see 4.2.104) where the physical quantity is the density of a material. The data associated with a Density are the following: - density_unit. The density_unit attribute specifies all the units which can be used to specify density. # 4.2.32 Design_anomaly A Design_anomaly is a type of Product_anomaly (see 4.2.146) which specifies the data which are attributable to design anomaly (see 3.8.6) of a mechanical product. The data associated with a Design_anomaly are the following: - design_anomaly_type The design_anomaly_type attribute specifies a descriptor for the type of design anomaly in textual format. # 4.2.33 Design_characteristic A Design_characteristic is a type of Functional_characteristic (see 4.2.60) and specifies the high level concept for all the definitions (see 3.8.43) which are attributable to the functional design of a mechanical product. The data associated with a Design_characteristic are the following: - defined for: - design_stage. #### **4.2.33.1** defined for The defined_for attribute specifies a set of one to many mechanical products for which design characteristics are defined. ## 4.2.33.2 design_stage The design_stage attribute specifies the design stage in text format. ## 4.2.34 Design_task A Design_task is a type of Task (see 4.2.189) and specifies the concept for collecting data which are attributable to a design task. The data associated with a Design_task are the following: ``` - type_of_task. ``` The type_of_task attribute specifies the type of design task in a text format. ## 4.2.35 Diesel_engine A Diesel_engine is a type of Reciprocating_machinery (see 4.2.161) which specifies the high level concept for all the marine diesel engines which need to be defined. ## 4.2.36 Diesel_engine_design_characteristic A Diesel_engine_design_characteristic is a type of Machinery_design_characteristic (see 4.2.90) which specifies the functional design characteristics of a diesel engine. The data associated with a Diesel_engine_design_characteristic are the following: ``` - piston_speed. ``` The piston_speed specifies the piston speed of the diesel engine. # 4.2.37 Diesel_engine_general_characteristic A Diesel_engine_general_characteristic is a type of Reciprocating_machinery_general_characteristic (see 4.2.163) which specifies the general characteristics (see 3.8.77) of a diesel engine. The data associated with a Diesel_engine_general_characteristic are the following: - charge cooler arrangement; - cylinder_configuration; - defined for; - engine_cycle; - firing angle; - firing_interval; - firing_order; - fuel_injection_system_type; - fuel_oil_system_type; - fuel_type; - piston_guide_type; - pressure_charging_system; - reversibility; - starting_system_method; - turbocharger_type; - vee_angle. ## 4.2.37.1 charge_cooler_arrangement The charge_cooler_arrangement specifies the installed arrangement of the charge cooler. ### 4.2.37.2 cylinder_configuration The cylinder_configuration attribute specifies whether the engine cylinder configuration is of type inline or Vee. The value of cylinder_configuration shall be one of the following: - in-line; - vee. - **4.2.37.2.1 in-line:** the descriptor which specifies that engine cylinders are in-line. - **4.2.37.2.2 vee:** the descriptor which specifies that engine cylinders are in Vee shape. ### **4.2.37.3** defined_for The defined_for attribute specifies a set of one to many diesel engines for which the general characteristics data are defined. # 4.2.37.4 engine_cycle The engine_cycle attribute specifies whether the engine is a 4-stroke or a 2-stroke engine. The value of the engine_cycle shall be one of the following: - four_stroke; - two stroke. - **4.2.37.4.1 four_stroke:** the descriptor which specifies that the engine is a four stroke type (two revolutions per engine
cycle). - **4.2.37.4.2 two_stroke:** the descriptor which specifies that the engine is a two stroke type (one revolution per engine cycle). ## **4.2.37.5** firing_angle The firing_angle attribute specifies the angle in degrees at which cylinder ignition/injection takes place. ### 4.2.37.6 firing_interval The firing_interval attribute specifies the nominal interval (in degrees) between two consecutive ignitions. ### 4.2.37.7 firing_order The firing_order attribute specifies the order by which ignition takes place in different cylinders, within a single engine cycle. This is an ordered list of cylinder numbers. ## 4.2.37.8 fuel_injection_system_type The fuel_injection_system_type attribute specifies the type of fuel injection system. The value of the fuel_injection_system_type shall be one of the following: - common_rail; - distributor_type; - user_defined_fuel_injection_system_type. - **4.2.37.8.1 common_rail:** the descriptor which specifies that the type of fuel injection system is common rail. - **4.2.37.8.2 distributor_type:** the descriptor which specifies that the type of fuel injection system is of distributor type. - **4.2.37.8.3 user_defined_fuel_injection_system_type:** the descriptor, set by the user, which specifies the type of fuel injection system if different from the other options. # 4.2.37.9 fuel_oil_system_type The fuel_oil_system_type attribute specifies the type of fuel oil system. # 4.2.37.10 fuel_type The fuel_type attribute specifies the type of fuel for the diesel engine. The value of the fuel_type shall be one of the following: - fuel_oil; - gas_oil; - user_defined_fuel_type. - **4.2.37.10.1 fuel_oil:** the descriptor which specifies that the type of fuel is fuel oil. - **4.2.37.10.2** gas_oil: the descriptor which specifies that the type of fuel is gas oil. **4.2.37.10.3 user_defined_fuel_type:** the descriptor, set by the user, which specifies the type of fuel if different from the other options. ### 4.2.37.11 piston guide type The piston_guide_type attribute specifies the type of the piston guide in text format. # 4.2.37.12 pressure_charging_system The pressure_charging_system attribute specifies the type of diesel engine pressure charging system. The value of pressure_charging_system shall be one of the following: - naturally_aspirated; - supercharged; - turbocharged; - user defined pressure charging system. - **4.2.37.12.1 naturally_aspirated:** the descriptor which specifies that the engine is a naturally aspirated one (not pressure charged). - **4.2.37.12.2 supercharged:** the descriptor which specifies that the engine is supercharged by air compressor using shaft power. - **4.2.37.12.3 turbocharged:** the descriptor which specifies that the engine is turbocharged. - **4.2.37.12.4 user_defined_pressure_charging_system:** the descriptor, set by the user, if the pressure charging system is different from the other options. # 4.2.37.13 reversibility The reversibility attribute specifies the engine capability to be driven in the reverse direction. # 4.2.37.14 starting_system_method The starting system method specifies the method of starting the diesel engine. The value of the starting_system_method shall be one of the following: - compressed_air; - electrical; - hydraulic; - user_defined_starting_system_method. - **4.2.37.14.1 compressed_air:** the descriptor which specifies that the engine is started using a compressed air pneumatic system. - **4.2.37.14.2 electrical:** the descriptor which specifies that the engine is started using an electrical drive system. - **4.2.37.14.3 hydraulic:** the descriptor which specifies that the engine is started using a hydraulic drive system. - **4.2.37.14.4 user_defined_starting_system_method:** the descriptor, set by the user, which specifies the starting system method if different from the other options. # 4.2.37.15 turbocharger_type The turbocharger_type attribute specifies the type of turbocharger used. ## 4.2.37.16 vee_angle The vee_angle attribute specifies the angle for the two banks of cylinders in a Vee-configured engine. # 4.2.38 Diesel_engine_operational_characteristic A Diesel_engine_operational_characteristic is a type of Machinery_operational_characteristic (see 4.2.92) which specifies the operational data and operational characteristics of a diesel engine. The data associated with a Diesel_engine_operational_characteristic are the following: - -BMEP; - brake_power; - brake torque; - BSFC: - cooling water data; - defined for; - exhaust emissions; - IMEP; - lube_oil_data; - maximum_cylinder_pressure; - shaft_revolution_counter. #### 4.2.38.1 BMEP The BMEP attribute specifies the brake mean effective pressure of a diesel engine. ## **4.2.38.2** brake_power The brake_power attribute specifies the brake power of a diesel engine. ### **4.2.38.3** brake_torque The brake_torque attribute specifies the engine torque at crankshaft output. #### 4.2.38.4 BSFC The BSFC attribute specifies the brake specific fuel consumption of a diesel engine. ### 4.2.38.5 cooling_water_data The cooling_water_data attribute specifies the cooling water pressure, temperature and flowrate through reference to Fluid_operational_data (see 4.2.59) application object. #### **4.2.38.6** defined for The defined_for attribute specifies a set of one to many diesel engines for which operation data are defined. ## 4.2.38.7 exhaust_emissions The exhaust_emissions attribute specifies the level of various exhaust emissions through reference to Exhaust_emission (see 4.2.51) application object. #### 4.2.38.8 IMEP The IMEP attribute specifies the indicated mean effective pressure of a diesel engine. #### **4.2.38.9 lube_oil_data** The lube_oil_data attribute specifies the cooling water pressure, temperature and flowrate through reference to Fluid_operational_data (see 4.2.59) application object. ### 4.2.38.10 maximum_cylinder_pressure The maximum_cylinder_pressure attribute specifies the maximum firing pressure of the cylinder. ### 4.2.38.11 shaft revolution counter The shaft_revolution_counter attribute specifies the value shown by the shaft revolution counter. #### 4.2.39 Dilatation A Dilatation is a type of Measure_with_unit (see 4.2.104) where the physical quantity is the dilatation of something. The data associated with a Dilatation are the following: - dilatation_unit. The dilatation unit attribute specifies all the units that can be used to specify dilatation. #### 4.2.40 Direction A Direction specifies a general direction vector in two or three dimensional space. It is used as defined in ISO 10303-42. #### **4.2.41 Document** A Document specifies global identification information for a document. The data associated with a Document are the following: - author; - version_id. #### 4.2.41.1 author The author attribute specifies full details of the author of the document. ### 4.2.41.2 version id The version_id attribute specifies the version number for identification of the document. ### 4.2.42 **Document_reference** A Document_reference is a type of External_reference (see 4.2.54) and a type of Document (see 4.2.41) and specifies the qualification of a Document in terms of its source and location. # 4.2.43 Drawing_configuration A Drawing_configuration specifies information for identification of CAD drawings and their approval details. The data associated with a Drawing_configuration are the following: - CAD_system_used; - drawing approval details; - drawing_description; - drawing id; - drawing_title; - drawing_type. # 4.2.43.1 CAD_system_used The CAD_system_used attribute specifies the name and version number of the CAD system used to generate the drawing. ### 4.2.43.2 drawing approval details The drawing_approval_details attribute specifies the summary information on the approval of a CAD drawing. A Drawing_configuration may have many drawing_approval_details. ## 4.2.43.3 drawing_description The drawing_description attribute specifies a textual description of the drawing, its context and modifications. # **4.2.43.4** drawing_id The drawing_id attribute specifies the drawing identification number. A Drawing_configuration must have only one drawing_id. ## 4.2.43.5 drawing_title The drawing title attribute specifies the full title of the drawing in a textual format. ## **4.2.43.6 drawing_type** The drawing_type attribute specifies the type of the drawing. The value of drawing_type shall be one of the following: - detailed_arrangement; - general_arrangement; - schematic; - sectional_view; - user defined drawing type. - **4.2.43.6.1 detailed_arrangement:** the descriptor which specifies that the drawing is a detailed arrangement. - **4.2.43.6.2 general_arrangement:** the descriptor which specifies that the drawing is of type general arrangement. - **4.2.43.6.3 schematic:** the descriptor which specifies that the drawing is of type schematic. - **4.2.43.6.4 sectional_view:** the descriptor which specifies that the drawing is of type sectional view. - **4.2.43.6.5 user_defined_drawing_type:** the descriptor, set by the user, which specifies the type of drawing if different from the other options. ### 4.2.44 Electrical_connection An Electrical_connection is a type of Mechanical_product_connection (see 4.2.113) which specifies the connection between a mechanical component and an electrical component or between two electrical components. The data associated with an Electrical_connection are the following: ``` - connection_type. ``` The connection_type attribute specifies the type of electrical connection. The value of the connection_type shall be one of the following: - welded; - socketed: - user_defined_connection_type; - welded. - **4.2.44.1 socketed:** The descriptor which specifies that the electrical connection is of type socketed. - **4.2.44.2 user_defined_connection_type:** The descriptor, set by the user, which specifies the type of electric connection if different from the other options. - **4.2.44.3 welded:** The descriptor which specifies that the electrical connection is
of type welded. # 4.2.45 Electrical_equipment An Electrical_equipment is a type of MP_equipment (see 4.2.122) which specifies the high level concept for all the ship's electrical equipment which needs to be defined. The data associated with an Electrical_equipment are the following: ``` - type_of_electrical_equipment. ``` The type_of_electrical_equipment attribute specifies the type of electrical machinery. The value of the type_of_electrical_equipment shall be one of the following: - motor_starter; - switch board; - transformer; - user_defined_electric_equipment; - **4.2.45.1** motor_starter: the descriptor which specifies that the electrical equipment is a motor starter. - **4.2.45.2 switch_board:** the descriptor which specifies that the electrical equipment is a switch board. - **4.2.45.3 transformer:** the descriptor which specifies that the electrical equipment is a transformer. - **4.2.45.4 user_defined_electric_equipment;** the descriptor, set by the user, which specifies the type of electrical equipment if different from the other options. ### 4.2.46 Electrical system An Electrical_system is a type of Mechanical_system (see 4.2.119) which specifies the high level concept for all the ship's electrical systems which need to be defined. The data associated with an Electrical system are the following: The type_of attribute specifies the type of electrical system. ### 4.2.47 Element_content An Element_content specifies the significant compositional information about the solid material. The data associated with an Element_content are the following: - element_content_percent; - element name. # 4.2.47.1 element_content_percent The element_content_percent attribute specifies the percentage of each compositional element. ## 4.2.47.2 element_name The element_name attribute specifies the name of each compositional element. # 4.2.48 Energy_per_mass An Energy_per_mass is a type of Measure_with_unit (see 4.2.104) when the physical quantity is the specific energy (energy per mass) of a material. The data associated with an Energy_per_mass are the following: ``` - energy_per_mass_unit. ``` The energy_per_mass_unit attribute specifies all the units which can be used to specify density. ### 4.2.49 Engineering analysis_definition An Engineering_analysis_definition is a type of Definition (see 4.2.30) which specifies the high level concept for all the definitions (see 3.8.43) which are attributable to engineering analysis (see 3.8.56). The data associated with an Engineering_analysis_definition are the following: - engineering_analysis_in_context; - organisation. ## 4.2.49.1 engineering_analysis_in_context The engineering_analysis_in_context attribute specifies the type of engineering analysis (see 3.8.56). The value of engineering_analysis_in_context shall be one of the following: - CFD analysis; - failure_investigation; - FEA: - RAM_analysis; - thermodynamic_analysis; - vibration_analysis; - user_defined_analysis; - **4.2.49.1.1 CFD_analysis:** the descriptor which specifies that the analysis is primarily of type CFD/analysis - **4.2.49.1.2 failure_investigation:** the descriptor which specifies that the analysis is primarily of type failure investigation. - **4.2.49.1.3 FEA:** the descriptor which specifies that the analysis is primarily of type FEA. - **4.2.49.1.4 RAM_analysis:** the descriptor which specifies that the analysis is primarily of type RAM analysis. - **4.2.49.1.5 thermodynamic_analysis:** the descriptor which specifies that the analysis is primarily of type thermodynamic analysis. - **4.2.49.1.6 vibration_analysis:** the descriptor which specifies that the analysis is primarily of type vibration analysis. - **4.2.49.1.7 user_defined_analysis:** the descriptor, set by the user, that specifies the type of engineering analysis if different from the other options. ### 4.2.49.2 organisation The organisation attribute specifies the organisation which has carried out the engineering analysis. #### 4.2.50 Event An Event identifies that something has happened at a certain time, activated by a certain person for a certain reason. The data associated with an Event are the following: - caused_by; - caused_when; - description. ### 4.2.50.1 caused_by The caused_by attribute specifies the person causing an Event. ### **4.2.50.2** caused_when The caused when attribute specifies the date and time the Event occurred. ## **4.2.50.3** description The description attribute specifies a textual description of significant features and reasons for the Event. The description need not be specified for a particular Event. ### 4.2.51 Exhaust emission An Exhaust_emission specifies the concept for collecting the diesel engine exhaust emissions data. The data associated with an Exhaust_emission are the following: - emissions_units; - nitrogen_oxides; - particulates; - smoke; - sulphur_oxides; - unburnt_hydrocarbon. ## 4.2.51.1 emissions_units The emissions_units attribute specifies the engineering units of exhaust emissions. # 4.2.51.2 nitrogen_oxides The nitrogen_oxides attribute specifies the level of exhaust nitrogen oxides. # 4.2.51.3 particulates The particulates attribute specifies the level of exhaust particulates. ### 4.2.51.4 smoke The smoke attribute specifies the level of exhaust smoke. ### 4.2.51.5 sulphur_oxides The sulphur_oxides attribute specifies the level of exhaust sulphur oxides. ### 4.2.51.6 unburnt_hydrocarbon The unburnt hydrocarbon attribute specifies the level of exhaust unburnt hydrocarbon. ### 4.2.52 External_instance_reference An External_instance_reference is a type of External_reference (see 4.2.54) and specifies the concept for referencing an external instance of application objects in an exchange file. The data associated with an External_instance_reference are the following: - entity_name; - schema_name. ## **4.2.52.1** entity_name The entity name attribute specifies the name of the entity as a label. ## 4.2.52.2 schema_name The schema_name attribute specifies the name of the schema within which the entity is located, as a label. # 4.2.53 External_mechanical_product_definition An External_mechanical_product_definition is a type of External_instance_reference (see 4.2.52) and specifies the concept for referencing an externally defined instance of all the entities defined in this part of ISO 10303. ## 4.2.54 External_reference An External_reference specifies the high level concept for referencing an information source, external to this part of ISO 10303. The data associated with an External_reference are the following: - description; - location; - source type. ### **4.2.54.1** description The description attribute specifies a description of the external source in text format. ### **4.2.54.2** location The location attribute specifies the location of an external source in the form of an address. ### **4.2.54.3** source_type The source_type attribute specifies the type of the external source. ### 4.2.55 External_reference_inside_source An External_reference_inside_source is a type of External_reference (see 4.2.54) with a pointer to a location inside the source. If the source is for example a book, the pointer could be a section label or a page number. The data associated with an External_reference_inside_source are the following: - line_number; - page; - paragraph; - section. # 4.2.55.1 line number The line_number attribute specifies a line number. The line_number need not be specified for a particular External_reference_inside_source. # 4.2.55.2 page The page attribute specifies the page number. The page need not be specified for a particular External_reference_inside_source. # **4.2.55.3** paragraph The attribute paragraph specifies the paragraph identifier. The paragraph need not be specified for a particular External_reference_inside_source. #### 4.2.55.4 section The section attribute specifies a section label. The section need not be specified for a particular External_reference_inside_source. #### **4.2.56** Failure A Failure is a type of Product_amomaly (see 4.2.146) which specifies the data which are attributable to a mechanical product failure. The data associated with a Failure are the following: - detailed failure cause; - failure_cause; - failure_criticality; - failure_descriptor; - failure_discovery_description; - failure_effects; - failure_mode; - failure_related_faults; - failure_related_maintenances; - failure_type. ## 4.2.56.1 detailed_failure_cause The detailed_failure_cause attribute specifies details of the cause of failure by referencing a document. ## 4.2.56.2 failure_cause The failure_cause attribute specifies the cause of failure. The value of the failure_cause shall be one of the following: - assembly_error; - improper_design; - improper_manufacturing; - improper_material; - installation_error; - maintenance_error; - management_error; - manufacturing_error; - off_design_service; - operation_error; - user defined cause. - **4.2.56.2.1 assembly_error:** the failure cause descriptor when failure is caused due to assembly deficiencies. - **4.2.56.2.2 improper_design:** the failure cause descriptor when failure is caused due to design deficiencies. - **4.2.56.2.3 improper_manufacturing:** the failure cause descriptor when failure is caused due to manufacturing deficiencies. - **4.2.56.2.4 improper_material:** the failure cause descriptor when failure is caused due to deficiency in material properties. - **4.2.56.2.5 installation_error:** the failure cause descriptor when failure is caused due to installation deficiencies. - **4.2.56.2.6 maintenance_error:** the failure cause descriptor when failure is caused due to poor or wrong maintenance work. - **4.2.56.2.7 management_error:** the failure cause descriptor when failure is caused due to managerial or administrative errors. - **4.2.56.2.8 manufacturing_error:** the failure cause descriptor when failure is caused due to manufacturing deficiencies. - **4.2.56.2.9 off_design_error:** the failure cause descriptor when failure is caused
due to operation under off-design conditions. - **4.2.56.2.10 operation_error:** the failure cause descriptor when failure is caused due to errors during normal operation. - **4.2.56.2.11 user_defined_cause:** the failure cause descriptor, set by the user, when failure is caused by anything other than the other options. ## 4.2.56.3 failure_criticality The failure_criticality attribute specifies the criticality level of a failure. The value of the failure criticality shall be one of the following: - critical_failure; - non_critical failure. - **4.2.56.3.1 critical_failure:** the failure criticality descriptor when failure is classified as critical failure. - **4.2.56.3.2 non_critical_failure:** the failure criticality descriptor when failure is classified as non-critical failure. # 4.2.56.4 failure_descriptor The failure_descriptor attribute specifies the apparent, observed cause of a failure. The value of the failure_descriptor shall be one of the following: - burning; - burst; - cavitation; - clearance_alignment; - contamination; - corrosion; - deformation; - fatigue; - leakage; - looseness; - short_circuit; - sticking; - user_defined_failure_descriptor; - vibration; - wear. - **4.2.56.4.1 burning:** the descriptor which specifies that the failure is caused by a local burning. - **4.2.56.4.2 burst:** the descriptor which specifies that the failure is caused by bursting. - **4.2.56.4.3 cavitation:** the descriptor which specifies that the failure is caused by flow cavitation. - **4.2.56.4.4 clearance_alignment:** the descriptor which specifies that the failure is caused by incorrect clearance alignment. - **4.2.56.4.5 contamination:** the descriptor which specifies that the failure is due to contamination. - **4.2.56.4.6 corrosion:** the descriptor which specifies that the failure is caused by corrosion. - **4.2.56.4.7 deformation:** the descriptor which specifies that the failure is caused by deformation of geometric shape. - **4.2.56.4.8 fatigue:** the descriptor which specifies that the failure is caused by fatigue. - **4.2.56.4.9 leakage:** the descriptor which specifies that the failure is caused by fluid leakage. - **4.2.56.4.10 looseness:** the descriptor which specifies that the failure is caused by looseness of components. - **4.2.56.4.11 short_circuit:** the descriptor which specifies that the failure is caused by electrical short circuiting. - **4.2.56.4.12 sticking together:** the descriptor which specifies that the failure is caused by the moving components being stick together. - **4.2.56.4.13 user_defined_failure_descriptor:** the descriptor, set by the user, which specifies an overall description of the cause of failure if different from the other options. - **4.2.56.4.14 vibration:** the descriptor which specifies that the failure is caused by excessive vibration. - **4.2.56.4.15** wear: the descriptor which specifies that the failure is caused by wear and tear. ## 4.2.56.5 failure_discovery_description The failure_discovery_description attribute specifies the manner by which the failure is discovered in text format. # 4.2.56.6 failure_effects The failure_effects attribute specifies various effects of a failure by referencing the Failure_effect (see 4.2.57) application object. ### **4.2.56.7 failure_mode** The failure_mode attribute specifies the manner by which a failure was discovered. The value of the failure_mode shall be one of the following: - erratic behaviour; - excessive_noise; - failed to start; - failed_to_stop; - high_output; - leakage; - low_output; - overheating; - unexpected_stop; - user_defined_mode. - **4.2.56.7.1 erratic_behaviour:** the failure mode descriptor when failure is discovered in the form of equipment behaving in a erratic manner. - **4.2.56.7.2 excessive_noise:** the failure mode descriptor when failure is discovered in the form of equipment generating significantly higher than expected noise. - **4.2.56.7.3 failed_to_start:** the failure mode descriptor when failure is discovered in the form of equipment failing to start on demand. - **4.2.56.7.4 failed_to_stop:** the failure mode descriptor when failure is discovered in the form of equipment failing to stop on demand. - **4.2.56.7.5 high_output:** the failure mode descriptor when failure is discovered in the form of higher than expected output. - **4.2.56.7.6 leakage:** the failure mode descriptor when failure is discovered in the form of unexpected leakage. - **4.2.56.7.7 low_output:** the failure mode descriptor when failure is discovered in the form of lower than expected output. - **4.2.56.7.8 overheating:** the failure mode descriptor when failure is discovered in the form of overheating. - **4.2.56.7.9 unexpected_stop:** the failure mode descriptor when failure is discovered in the form of equipment stopping unexpectedly. - **4.2.56.7.10 user_defined_mode:** the failure mode descriptor, set by the user, when failure discovered in any other form than the stated options. ### 4.2.56.8 failure related faults The failure_related_faults attribute specifies the faults which are associated with a failure. ### 4.2.56.9 failure related maintenances The failure_related_maintenance attribute specifies the maintenance tasks which are associated with a failure. ## **4.2.56.10 failure_type** The failure type attribute specifies the classification of failure by discipline. The value of the failure_type shall be one of the following: - electrical_failure; - mechanical_failure; - structural_failure; - user_defined_failure_type. - **4.2.56.10.1 electrical_failure:** the failure type descriptor when failure relates to the electrical aspects of the product. - **4.2.56.10.2 mechanical_failure:** the failure type descriptor when failure relates to the mechanical aspects of the product. - **4.2.56.10.3 structural_failure:** the failure type descriptor when failure relates to the structural aspects of the mechanical product. - **4.2.56.10.4 user_defined_failure_type:** the failure type descriptor, set by the user, when failure relates to an engineering discipline other than the other options. ### 4.2.57 Failure effect A Failure_effect specifies the data which define various effects of a failure. The data associated with a Failure_effect are the following: - failure_effect_description; - failure_effect_on_ship. ## 4.2.57.1 failure_effect_description The failure_effect_description attribute specifies a textual description of the effect of failure. # 4.2.57.2 failure_effect_on_ship The failure_effect_on_ship attribute specifies the effect of failure on a ship. The value of the failure_effect_on_ship shall be one of the following: - complete_failure_of_capability; - degraded ship capability; - normal_ship_operation; - user defined effect on ship. - **4.2.57.2.1 complete_failure_of_capability:** the descriptor that specifies that the failure has caused a complete loss of ship capability. - **4.2.57.2.2 degraded_ship_capability:** the descriptor that specifies that the failure has some degrading effect on ship capability such as performance, speed and mission. - **4.2.57.2.3 normal_ship_operation:** the descriptor that specifies that the failure has no significant effect on normal ship operation. - **4.2.57.2.4 user_defined_effect_on_ship:** the descriptor, set by the user, that specifies the effect of failure on ship if different from other options. #### **4.2.58** Fault A Fault is a type of Product_anomaly (see 4.2.146) which specifies the data which are attributable to a mechanical product fault. The data associated with a Fault are the following: - fault_cause; - fault_class; - fault method of diagnosis; - fault_related_failures; - fault_related_maintenances; - fault_severity_functional; - fault severity safety. ## **4.2.58.1 fault_cause** The fault_cause attribute specifies a textual description of the causes of the fault. ## **4.2.58.2 fault_class** The fault_class attribute specifies the type of fault. The value of fault class shall be one of the following: - design_fault; - mishandling_fault; - misuse_fault; - user_defined_fault_class; - wear_out_fault. - **4.2.58.2.1 design_fault:** the descriptor which specifies that the fault has occurred because of improper design. - **4.2.58.2.2 mishandling_faults:** the descriptor which specifies that the fault has occurred due to mishandling of the product. - **4.2.58.2.3 misuse_fault:** the descriptor which specifies that the fault has occurred due to use of the mechanical product beyond its design and operational limits. - **4.2.58.2.4 user_defined_fault:** the descriptor, set by the user, which specifies the type of fault if different for the other options. - **4.2.58.2.5 wear_out_fault:** the descriptor which specifies that the fault has occurred due to wear and tear. ### 4.2.58.3 fault_method_of_diagnosis $The \ fault_method_of_diagnosis \ attribute \ specifies \ the \ method \ by \ which \ the \ fault \ has \ been \ diagnosed.$ The value of fault_method_of_diagnosis shall be one of the following: - class_survey; - condition_monitoring_continuous; - condition_monitoring_periodic; - corrective_maintenance; - functional_testing; - inspection; - user-defined_method_of_diagnosis. - **4.2.58.3.1 class_survey:** the descriptor which specifies that the fault has been diagnosed as a result of a classification society survey. - **4.2.58.3.2 condition_monitoring_continuous:** the descriptor which specifies that the fault has been diagnosed using a continuous condition monitoring system. - **4.2.58.3.3 condition_monitoring_periodic:** the descriptor which specifies that the fault has been diagnosed as a result of a periodic condition monitoring. - **4.2.58.3.4 corrective_maintenance:** the descriptor which specifies that the fault has been diagnosed while performing a corrective maintenance task. - **4.2.58.3.5 functional_testing:** the descriptor which specifies that the fault has been diagnosed by functional testing of the equipment. - **4.2.58.3.6 inspection:** the descriptor which
specifies that the fault has been diagnosed as a result of an inspection. - **4.2.58.3.7 user_defined_method_of_diagnosis:** the descriptor, set by the user, if the fault has been diagnosed by any other option. ## 4.2.58.4 fault_related_failures The fault_related_failures attribute specifies the failures which are associated to a fault. ### 4.2.58.5 fault related maintenances The fault_related_maintenances attribute specifies the maintenance tasks which are associated to a fault. # 4.2.58.6 fault_severity_functional The fault_severity_functional attribute specifies a descriptor for the severity of the fault in relation to influencing the product's function. The value of fault_severity_functional shall be one of the following: - complete fault; - major_fault; - minor fault. - **4.2.58.6.1 complete_fault:** the descriptor which specifies that the fault is a complete fault, resulting in a complete loss of the product's function. - **4.2.58.6.2 major_fault:** the descriptor which specifies that the fault is a major fault, resulting in a significant loss of the product's function. - **4.2.58.6.3** minor_fault: the descriptor which specifies that the fault is a minor fault, resulting in no significant loss of product's function. ## 4.2.58.7 fault_severity_safety The fault_severity_safety attribute specifies a descriptor for the severity of the fault in relation to safety of life or major assets. The value of fault_severity_safety shall be one of the following: - critical_fault; - non_critical_fault. - **4.2.58.7.1 critical_fault:** the descriptor which specifies that the fault is a critical fault. - **4.2.58.7.2 non_critical_fault:** the descriptor which specifies that the fault is a non-critical fault. ## 4.2.59 Fluid_operational_data A Fluid_operational_data specifies the fluid temperature, pressure and flowrate for any type of cooling/heating fluids. The data associated with a Fluid_operational_data are the following: - flowrate; - fluid_pressure; - fluid_temperature. ### **4.2.59.1** flowrate The flowrate attribute specifies the flowrate of the fluid. ## 4.2.59.2 fluid_pressure The fluid-pressure attribute specifies the fluid pressure of the fluid. # 4.2.59.3 fluid_temperature The fluid_temperature attribute specifies the fluid temperature of the fluid. ## 4.2.60 Functional characteristic A Functional_characteristic is a type of Functional_definition (see 4.2.61) and specifies the high level concept for all the definitions (see 3.8.43) which are attributable to the functional characteristics (see 3.8.72) of a mechanical product. The data associated with a Functional characteristic are the following: ``` - function in context ``` The function_in_context attribute specifies and describes the context within which the functional characteristics is needed or going to be used. The function_in_context is an optional attribute. ## **4.2.61** Functional_definition A Functional_definition is a type of Definition (see 4.2.30) and specifies the high level concept for all the functional (see 3.8.71) definitions which are attributable to mechanical products. The data associated with a Functional_definition are the following: ``` the_function; ``` - user def function. ### **4.2.61.1 the_function** The the_function attribute specifies the functionality of mechanical product. # 4.2.61.2 user_def_function The user_def_function specifies the functionality of mechanical product as assigned by the user. ### 4.2.62 Gas A Gas specifies the high level concept for all the gaseous materials which need to be defined. The data associated with a Gas are the following: ``` - gas_type; ``` The gas_type attribute specifies the type of gaseous material. The value of the gas_type shall be one of the following: ``` - air: ``` - exhaust_gas; - steam: - user_defined_gas. - **4.2.62.1** air: the descriptor which specifies that the gas is air. - **4.2.62.2 exhaust_gas:** the descriptor which specifies that the gas is exhaust gas. - **4.2.62.3 steam:** the descriptor which specifies that the gas is steam. - **4.2.62.4** user_defined_gas: the descriptor, set by the user, which specifies the type of gas if different from the other options. ## 4.2.63 Gas_chemical_property A Gas_chemical_property is a type of Gas_material_property (see 4.2.64) which specifies the chemical properties of a gas. The data associated with a Gas_chemical_property are the following: - composition_by_element; - higher_heating_value; - ignition_temperature; - lower_heating_value; - mean_molecular_weight; - other_composition. # 4.2.63.1 composition_by_element The composition_by_element attribute specifies the composition of the gas in terms of its chemical elements. # 4.2.63.2 higher_heating_value The higher_heating_value attribute specifies the higher heating value of the gas. # 4.2.63.3 ignition_temperature The ignition_temperature attribute specifies the self-ignition temperature of the gas. # 4.2.63.4 lower_heating_value The lower_heating_value attribute specifies the lower heating value of the gas. # 4.2.63.5 mean_molecular_weight The mean_molecular_weight attribute specifies the mean molecular weight of the gas. # 4.2.63.6 other_composition The other_composition attribute specifies the gas composition in terms of its constituents in a text format. ### 4.2.64 Gas_material_property A Gas_material_property is a type of Material_property (see 4.2.103) which specifies the high level concept for all the properties which are attributable to a gas. The data associated with a Gas_material_property are the following: ``` defined_for. ``` The defined_for attribute specifies the type of gas for which gas properties have been defined. ## 4.2.65 Gas_physical_property A Gas_physical_property is a type of Gas_material_property (see 4.2.64) which specifies the physical properties of a gas. The data associated with a Gas_physical_property are the following: - density; - reference_pressure; - reference_temperature; - thermal_conductivity; - viscosity. # 4.2.65.1 density The density attribute specifies the gas density. # 4.2.65.2 reference_pressure The reference_pressure attribute specifies the reference pressure for all the pressure-dependent properties. # 4.2.65.3 reference_temperature The reference_temperature attribute specifies the reference temperature for all the temperature-dependent properties. # 4.2.65.4 thermal_conductivity The thermal_conductivity attribute specifies the gas thermal conductivity. # **4.2.65.5** viscosity The viscosity attribute specifies the gas viscosity. ### 4.2.66 Gear box A Gear_box is a type of Mechanical_equipment (see 4.2.107.) and specifies the data representation concept for all the gear boxes which need to be defined. The data associated with a Gear_box are the following: ``` gear_box_type. ``` The gear_box_type attribute specifies the type of gear box in a text format. ## 4.2.67 Geometric_definition A Geometric_definition is a type of Physical_definition (see 4.2.135) and specifies the high level concept for all the definitions attributable to shape and various dimensional characteristics of a mechanical product. The data associated with a Geometric_definition are the following: ``` - usage_in_context. ``` The usage_in_context attribute specifies for what purpose the geometric definitions are going to be used. The usage_in_context is an optional attribute in text format. ### 4.2.68 Geometric_representation_item A Geometric_representation_item is an element of geometric product data that either participates in one or more representations. It is used as defined in ISO 10303-42. #### 4.2.69 **GUID** A GUID is a global unique identifier used for uniquely identifying an externally referenced entitity. The data associated with a GUID are the following: - company_identification; - company_name. # 4.2.69.1 company_identification The company identification attribute is a company-specific unique identification label. # **4.2.69.2 company_name** The company_name attribute is the name of the company for which company_identification (see 4.2.69.1) is specified. # 4.2.70 Heat_capacity A Heat_capacity is a type of Measure_with_unit (see 4.2.104) where the physical quantity is the heat capacity of a material. The data associated with a Heat_capacity are the following: ``` - heat_capacity_unit. ``` The heat_capacity_unit attribute specifies all the units which can be used for heat capacity. ## 4.2.71 Heat_exchanger A Heat_exchanger is a type of Process_equipment (se 4.2.145) and specifies the data representation concept for all the heat exchangers which need to be defined. The data associated with a Heat_exchanger are the following: ``` - heat_exchanger_role; ``` heat_exchanger_type. ## 4.2.71.1 heat_exchanger_role The heat_exchanger_role attribute specifies the role of the heat exchanger. The value of heat_exchanger_role shall be one of the following: - air_cooler; - air heater; - economiser; - fuel_preheater; - oil_cooler; - oil_heater; - recuperator; - regenerator; - water_cooler; - water heater; - user_defined_heat_exchanger_role. - **4.2.71.1.1** air_cooler: the descriptor which specifies that the heat exchanger is used as an air cooler. - **4.2.71.1.2** air_heater: the descriptor which specifies that the heat exchanger is used as an air heater. - **4.2.71.1.3 economiser:** the descriptor which specifies that the heat exchanger is used as an economiser. - **4.2.71.1.4 fuel_preheater:** the descriptor which specifies that the heat exchanger is used as a fuel preheater. - **4.2.71.1.5 oil cooler:** the descriptor that specifies which the heat exchanger is used as an oil cooler. - **4.2.71.1.6 oil_heater:** the descriptor which specifies that the heat exchanger is used as an oil heater. - **4.2.71.1.7 recuperator:** the descriptor which specifies that the heat exchanger is used as a recuperator. - **4.2.71.1.8** regenerator: the descriptor which specifies that the heat exchanger is used as a regenerator. - **4.2.71.1.9 water_cooler:** the descriptor which specifies
that the heat exchanger is used as a water cooler. - **4.2.71.1.10 water_heater:** the descriptor which specifies that the heat exchanger is used as a water heater. - **4.2.71.1.11 user_defined_heat_exchanger_role:** the descriptor, set by the user, which specifies the role of the heat exchanger if different from the other options. # 4.2.71.2 heat_exchanger_type The heat_exchanger_type attribute specifies the type of heat exchanger. The value of heat_exchanger_type shall be one of the following: - shell_and_tube_counter_flow; - shell_and_tube_cross_flow; - shell and tube parallel flow; - user_defined_heat_exchanger_type. - **4.2.71.2.1 shell_and_tube_counter_flow:** the descriptor which specifies that the heat exchanger is of type shell and tube with counter flow. - **4.2.71.2.2 shell_and_tube_cross_flow:** the descriptor which specifies that the heat exchanger is of type shell and tube with cross flow. - **4.2.71.2.3 shell_and_tube_parallel_flow:** the descriptor which specifies that the heat exchanger is of type shell and tube with parallel flow. - **4.2.71.2.4 user_defined_heat_exchanger_type:** the descriptor, set by the user, which specifies the type of heat exchanger if different from the other options. ### 4.2.72 Human_resource A Human_resource is a type of Task_resource (see 4.2.197) which specifies the data which relate to human resources required to perform a task. The data associated with a Human_resource are the following: - man_time; - personnel. ### 4.2.72.1 man time The man time attribute specifies the time needed/used to perform a task. ## **4.2.72.2 personnel** The personnel attribute specifies the particulars of the personnel needed for carrying out the task. ### 4.2.73 Inertia moment An Inertia_moment is a type of Measure_with_unit (see 4.2.104) where the physical quantity is the moment of inertia of something. The data associated with an Inertia_moment are the following: inertia_moment_unit. The inertia_moment_unit attribute specifies all the units which can be used to specify moment of inertia. ### 4.2.74 Item An Item is a type of Definable_object (see 4.2.29) and specifies the high level concept for any of the ship's items (see 3.8.82) which need to be defined or described. The data associated with an Item are the following: - description; - documentation; - -id; - ship_context. ## **4.2.74.1** description The description specifies a textual description for the item. #### 4.2.74.2 documentation The documentation specifies the documentation available, if any, for the item. The documentation is an optional attribute. There may be more than one documentation for an Item. ### 4.2.74.3 id The id specifies a text string for identification of the item. ## **4.2.74.4 ship_context** The ship_context specifies the context of the item in terms of its applicability or belonging to a ship. The ship_context need not be specified for a particular item. # 4.2.75 Item_relationship An Item_relationship is the supertype for all the Mechanical_product_relationship (see 4.2.116) and defines the association between two items. The data associated with an Item_relationship are the following: - context; - item_1; - item 2. ### 4.2.75.1 context The context attribute specifies the significant aspect of the relationship in the form of a label. ### 4.2.75.2 item_1 The item_1 attribute specifies the first item which takes part in the relationship. ### 4.2.75.3 item 2 The item_2 attribute specifies the second item which takes part in the relationship. ### 4.2.76 Item structure An Item_structure is a type of Definable_object (see 4.2.29). The data associated with an Item_structure are the following: - item_relationships; - items. ## 4.2.76.1 item_relationships The item_relationships attribute specifies the relationship between items which are part of an item_structure. ### 4.2.76.2 items The items attribute specifies the particulars of products which belong to a product structure. There may be more than one item for an Item_structure. ### 4.2.77 Label A Label application object is used to assign a character label to something. It is used as defined in ISO 10303-41. ## 4.2.78 Length A Length is a type of Measure_with_unit (see 4.2.104) where the physical quantity is the length of something. The data associated with a Length are the following: - length unit. The length_unit attribute specifies all the units which can be used to specify length. # 4.2.79 Lifting_equipment A Lifting_equipment is a type of MP_equipment (see 4.2.122) and specifies the high level concept for all the lifting equipments which need to be defined. The data associated with a Lifting_equipment are the following: lifting_equipment_type. The lifting_equipment_type attribute specifies the type of lifting equipment. The value of lifting equipment type shall be one of the following: - crane; - derrick: - user_defined_lifting_equipment_type. - **4.2.79.1 crane:** the descriptor which specifies that the lifting equipment is a crane. - **4.2.79.2 derrick:** the descriptor which specifies that the lifting equipment is a derrick. - **4.2.79.3 user_defined_lifting_equipment_type:** the descriptor, set by the user, which specifies the type of lifting equipment if different from the other options. ## 4.2.80 Lifting_equipment_design_characteristic A Lifting_equipment_design_characteristic is a type of Design_characteristic (see 4.2.33) and specifies the concept for collecting all the definitions which are attributable to the design characteristic of all types of lifting equipment. The data associated with a Lifting_equipment_design_characteristic are the following: - defined_for; - lifting_capacity; - nature_of_lifting_operation. ### **4.2.80.1 defined_for** The defined_for attribute specifies a set of one to many lifting equipments for which the definitions are defined. # 4.2.80.2 lifting_capacity The lifting_capacity attribute specifies the maximum load which can be lifted by the lifting equipment. # 4.2.80.3 nature_of_lifting_operation The nature_of_lifting_operation attribute specifies the nature of the operation of the lifting equipment in text format. # **4.2.81** Liquid A liquid specifies the high level concept for all the liquid materials which need to be defined. The data associated with a Liquid are the following: - liquid type; The liquid_type attribute specifies the type of liquid material. The value of the liquid_type shall be one of the following: - fuel oil; - gas_oil; - lubrication oil; - user_defined_liquid; - water. - **4.2.81.1 fuel_oil:** the descriptor which specifies that the liquid is fuel oil. - **4.2.81.2** gas_oil: the descriptor which specifies that the liquid is gas oil. - **4.2.81.3 lubrication_oil:** the descriptor which specifies that the liquid is lubrication oil. - **4.2.81.4 user_defined_liquid:** the descriptor, set by the user, if the type of liquid is different from the other options. - **4.2.81.5** water: the descriptor which specifies that the liquid is water. # 4.2.82 Liquid_chemical_property A Liquid_chemical_property is a type of Liquid_material_property (see 4.2.85) which specifies the chemical properties of a liquid. The data associated with a Liquid_chemical_property are the following: - ignition_temperature. The ignition temperature attribute specifies the ignition temperature of a liquid. # 4.2.83 Liquid_fluid_impurity A Liquid fluid impurity specifies the level of impurities in a liquid. The data associated with a Liquid_fluid_impurity are the following: - liquid_impurity_contents; - metallic_impurity_contents; - total_sediments_percent. # 4.2.83.1 liquid_impurity_contents The liquid_impurity_contents attribute specifies all the trace liquids together with their percentage level. # 4.2.83.2 metallic_impurity_contents The metallic_impurity_contents attribute specifies all the trace metals together with their percentage level. # 4.2.83.3 total_sediments_percent The total_sediments_percent attribute specifies the total percentage of sediments (see 3.8.137). ## 4.2.84 Liquid_impurity A Liquid_impurity specifies the name and level of each liquid-type impurity. The data associated with a Liquid_impurity are the following: - liquid_content_percent; - liquidname. ## 4.2.84.1 liquid content percent The liquid_content_percent attribute specifies the level of impurity in percentage. ## **4.2.84.2** liquid_name The liquid_name attribute specifies the name of the liquid. The value of liquid_name shall be one of the following: - oil; - user_defined_liquid; - water. - **4.2.84.2.1 oil:** the descriptor which specifies that the impurity is oil. - **4.2.84.2.2 user_defined_liquid:** the descriptor, set by the user, which specifies the name of the liquid impurity if different from the other options. - **4.2.84.2.3** water: the descriptor which specifies that the impurity is water. # 4.2.85 Liquid_material_property A Liquid_material_property is a type of Material_property (see 4.2.103) and specifies the high level concept for all the properties which are attributable to liquids. The data associated with a Liquid_material_property are the following: defined_for. The defined_for attribute specifies the type of liquid for which the properties are being defined. # 4.2.86 Liquid_physical_property A Liquid_physical_property is a type of Liquid_material_property (see 4.2.85) which specifies the physical properties of a liquid. The data associated with a Liquid physical property are the following: - density; - flash_point; - heat_capacity; - impurities; - pour_point; - reference_pressure; - reference_temperature; - surface tension; - thermal_conductivity; - viscosity. ## 4.2.86.1 density The density attribute specifies the liquid density at reference temperature. ## 4.2.86.2 flash point The flash_point attribute specifies the liquid flash point. ## 4.2.86.3 heat_capacity The heat_capacity attribute specifies the liquid heat capacity at reference temperature. ## **4.2.86.4 impurities** The impurities attribute specifies the level of different
impurities in the liquid. # 4.2.86.5 **pour_point** The pour_point attribute specifies the liquid pour point. # 4.2.86.6 reference_pressure The reference_pressure attribute specifies the reference pressure for all the pressure-dependent properties. # 4.2.86.7 reference_temperature The reference_temperature attribute specifies the reference temperature for all the temperature-dependent properties. ### 4.2.86.8 surface_tension The surface _tension attribute specifies the liquid surface tension at reference temperature. # 4.2.86.9 thermal_conductivity The thermal_conductivity attribute specifies the liquid thermal conductivity at reference temperature. ### 4.2.86.10 viscosity The viscosity attribute specifies the liquid viscosity at reference temperature. ### 4.2.87 Local_co_ordinate_system A Local_co_ordinate_system is used to locate something in space. A Local_co_ordinate_system is always defined with respect to another coordinate system, this might be the global coordinate system or another local coordinate system. #### **NOTES** - 1 The local axes directions are called U, V, W. The local W-direction is normal to the plane, defined by local_u and local_v - 2 A local coordinate system shall form a right handed system. The data associated with a Local_coordinate_system are the following: - local_u; - local_v; - local_w; - parent_to_coordinate_system; - u_value; - v_value; - w_value. ### 4.2.87.1 local_u The local_u attribute specifies the local axis, defined in the underlying coordinate system, global or local. ## 4.2.87.2 local_v The local_v attribute specifies the local axis perpendicular to local_u, defined in the underlying coordinate system, global or local. ### 4.2.87.3 local_w The local_w attribute specifies the local axis perpendicular to local_u and local_v, defined in the underlying coordinate system, global or local. ### 4.2.87.4 parent_to_coordinate_system The parent_to_coordinate_system attribute specifies the underlying coordinate system which serves as definition space for this coordinate system. The parent coordinate system will be specified in text format. ### 4.2.87.5 u_value The u_value attribute specifies the coordinate for the origin, value along parent u-axis. ### **4.2.87.6** v_value The v_value attribute specifies the coordinate for the origin, value along parent v-axis. ### 4.2.87.7 w value The w_value attribute specifies the coordinate for the origin, value along parent w-axis. ## 4.2.88 Machinery A Machinery is a type of MP_equipment (see 4.2.122) and specifies the high level concept for all types of machinery (see 3.8.88) which need to be defined. The data associated with a Machinery are the following: - machinery_type. The machinery_type attribute specifies the type of machinery. The value of machinery_type shall be one of the following: - electrical_machinery; - mechanical_machinery; - process_machinery; - user_defined_machinery. - **4.2.88.1 electrical_machinery:** the descriptor which specifies that the machinery is of type electrical machinery (see 3.8.54). - **4.2.88.2 mechanical_machinery:** the descriptor which specifies that the machinery is of type mechanical machinery (see 3.8.101). - **4.2.88.3 process_machinery:** the descriptor which specifies that machinery is of type process machinery. - **4.2.88.4 user-defined_machinery:** the descriptor, set by the user, if type of machinery is different from the other options. # 4.2.89 Machinery_ambient_condition A Machinery_ambient_condition is a type of Ambient_condition (see 4.2.2) and specifies the ambient conditions for a machinery. The data associated with a Machinery_ambient_condition are the following: - ambient_pressure_maximum; - ambient pressure minimum; - ambient temperature maximum; - ambient temperature minimum; - defined for. ### 4.2.89.1 ambient_pressure_maximum The ambient_pressure_maximum attribute specifies the maximum ambient pressure for which the machinery has been designed. ### 4.2.89.2 ambient_pressure_minimum The ambient_pressure_minimum attribute specifies the minimum ambient pressure for which the machinery has been designed. ### 4.2.89.3 ambient_temperature_maximum The ambient_temperature_maximum attribute specifies the maximum temperature for which the machinery has been designed. ## 4.2.89.4 ambient_temperature_minimum The ambient_temperature_minimum attribute specifies the minimum temperature for which the machinery has been designed. ### **4.2.89.5** defined for The defined_for attribute specifies a set of one to many machineries for which the definitions are defined. # 4.2.90 Machinery_design_characteristic A Machinery_design_characteristic is a type of Design_characteristic (see 4.2.33) and specifies the functional design data which are attributable to all types of machineries. The data associated with a Machinery_design_characteristic are the following: - defined_for; - design_points; - overload_characteristics; - rotational_speed_maximum; - rotational_speed_minimum; - power_maximum. # **4.2.90.1 defined_for** The defined_for attribute specifies a set of one to many machineries for which the definitions are defined. ## 4.2.90.2 design_points The design_points attribute specifies a set of operating conditions, which are significant from a design point of view, by referencing an Operating point (see 4.2.126) application object. ### 4.2.90.3 overload characteristics The overload_characteristics attribute specifies the machinery overload specifications in a textual descriptor format. ## 4.2.90.4 rotational speed maximum The rotational_speed_maximum attribute specifies the maximum/rated operational speed of the machinery. ## 4.2.90.5 rotational_speed_minimum The rotational speed minimum attribute specifies the minimum/idle operational speed of the machinery. ## 4.2.90.6 power_maximum The power_maximum attribute specifies the maximum/rated power of the machinery. ## 4.2.91 Machinery_general_characteristic A Machinery_general_characteristic is a type of MP_equipment_general_characteristic (see 4.2.123) and specifies the high level concept for all the general characteristics data which need to be attributed to all types of machinery. The data associated with a Machinery general characteristic are the following: - defined for; - direction_of_rotation; - lube oil system type. # **4.2.91.1 defined_for** The defined_for attribute specifies a set of one to many machineries for which the definitions are defined. # 4.2.91.2 direction_of_rotation The direction_of_rotation attribute specifies the machinery direction of rotation. The value of direction_of_rotation shall be one of the following: - anti clockwise; - clockwise. **4.2.91.2.1** anti_clockwise: The discriptor which specifies that the machinery rotates anti-clockwise when viewed from the left. **4.2.91.2.2 clockwise:** The discriptor which specifies that the machinery rotates clockwise when viewed from the left. ### 4.2.91.3 lube_oil_system_type The lube_oil_system_type attribute specifies the type of machinery lubrication system in a text format. ## 4.2.92 Machinery_operational_characteristic A Machinery_operational_characteristic is a type of Operational_characteristic (see 4.2.128) and specifies the operational data which are attributable to all kinds of machinery. The data associated with a Machinery_operational_characteristic are the following: - accumulated_revolution_counter; - accumulated_shaft_energy; - defined_for; - operating points. ### 4.2.92.1 accumulated revolution counter The accumulated_revolution_counter attribute specifies the total number of revolutions of the machinery so far in its lifecycle. # 4.2.92.2 accumulated_shaft_energy The accumulated_shaft_energy attribute specifies the total energy provided or consumed by the machinery at its output/input shaft so far in its lifecycle. # 4.2.92.3 defined_for The defined_for attribute specifies a set of one to many machineries for which the definitions are defined. # 4.2.92.4 operating points The operating_points attribute specifies a set of operating conditions by referencing an Operating_point (see 4.2.126) application object. # 4.2.93 Maintainability A Maintainability specifies the data which are attributable to the maintainability performance (see 3.7) of a mechanical product. The data associated with a Maintainability are the following: - maintainability; - mean_logistic_delay; - mean_maintenance_man_hour; - mean_time_to_repair. ### 4.2.93.1 maintainability The maintainability attribute specifies the probability that a given maintenance action can be completed within a stated time interval. ### 4.2.93.2 mean_logistic_delay The mean_logistic_delay attribute specifies the level of delays due to logistical problems in relation to the maintenance of a product. ### 4.2.93.3 mean_maintenance_man_hour The mean_maintenance_man_hour attribute specifies the level of expected man-hours for maintenance actions. # 4.2.93.4 mean_time_to_repair The mean_time_to_repair attribute specifies the maintainability performance of a product in terms of its expected/actual mean time to repair. # 4.2.94 Maintenance_configuration_data A Maintenance_configuration_data is a type of Task_configuration (see 4.2.191) that specifies the configuration (see 3.8.32) for a maintenance task. The data associated with the Maintenance_configuration_data are the following: - defined for; - maintenance_class_by_discipline; - maintenance_type; - maintenance_type_iso. ## **4.2.94.1** defined for The defined_for attribute specifies a set of one to many maintenance tasks for which configuration data are defined. # 4.2.94.2 maintenance_class_by_discipline The maintenance_class_by_discipline attribute specifies the classification of maintenance by engineering discipline. The value of maintenance_class_by_discipline shall be one of the following: - electrical: - electronic; - mechanical: - user_defined_discipline. - **4.2.94.2.1 electrical:** the descriptor which specifies that the maintenance relates to the electrical aspect of the
product. - **4.2.94.2.2 electronic:** the descriptor which specifies that the maintenance relates to the electronic aspect of the product. - **4.2.94.2.3 mechanical:** the descriptor which specifies that the maintenance relates to the mechanical aspect of the product. - **4.2.94.2.4 user_defined_discipline:** the descriptor, to be set by the user, which specifies the maintenance related engineering discipline, if different from the other options. ## 4.2.94.3 maintenance_type The maintenance_type attribute specifies the type of maintenance. The value of maintenance_type shall be one of the following: - corrective: - preventive_condition_based; - preventive time based. - **4.2.94.3.1 corrective:** the descriptor which specifies that the maintenance is of type corrective maintenance. - **4.2.94.3.2 preventive_condition_based:** the descriptor which specifies that the maintenance is of type preventive maintenance and is based on the condition of the product rather than a pre-defined time schedule. - **4.2.94.3.3 preventive_time_based:** the descriptor which specifies that the maintenance is of type preventive maintenance and is based on a pre-defined time schedule. # 4.2.94.4 maintenance_type_iso The maintenance_type_iso attribute specifies the type of maintenance according to IEC 50 standard. The value of maintenance_type_iso shall be one of the following: - corrective; - preventive. **4.2.94.4.1 corrective:** the descriptor which specifies that the maintenance is of type corrective maintenance. **4.2.94.4.2 preventive:** the descriptor which specifies that the maintenance is of type preventive maintenance. ### 4.2.95 Maintenance human resource A Maintenance_human_resource is a type of Human_resource (see 4.2.72) that specifies the human resources needed to perform the maintenance task. The data associated with a Maintenance_resource are the following: ``` - defined for. ``` The defined_for attribute specifies a set of one to many maintenance tasks for which human resources need to be defined. ## 4.2.96 Maintenance_procedure A Maintenance_procedure is a type of Task_procedure (see 4.2.195) that specifies the procedures for carrying out a maintenance task. The data associated with a Maintenance_procedure are the following: ``` - defined for. ``` The defined_for attribute specifies a set of one to many maintenance tasks for which maintenance procedures need to be defined. ### 4.2.97 Maintenance result A Maintenance_result is a type of Task_result (see 4.2.198) that specifies the results of a maintenance task. The data associated with a Maintenance result are the following: ``` - defined for. ``` The defined_for attribute specifies a set of one to many maintenance tasks for which maintenance results need to be defined. ## 4.2.98 Maintenance schedule A Maintenance_schedule is a type of Task_schedule (see 4.2.199) which specifies the schedule needed for a maintenance task. The data associated with a Maintenance schedule are the following: ``` defined_for. ``` The defined_for attribute specifies a set of one to many maintenance tasks for which the schedule needs to be defined. # 4.2.99 Maintenance_spare_part A Maintenance_spare_part is a type of Spare_part (see 4.2.181) which specifies the spare parts needed for a maintenance task. The data associated with a Maintenance_spare_part are the following: ``` - defined for. ``` The defined_for attribute specifies a set of one to many maintenance tasks for which the spare parts need to be defined. ### 4.2.100 Maintenance_task A Maintenance_task is a type of Task (see 4.2.189) which specifies the high level concept for all the maintenance tasks (see 3.8.155) which need to be defined. The data associated with a Maintenance_task are the following: - maintenance category; - maintenance related failures. ## 4.2.100.1 maintenance_category The maintenance_category attribute specifies the category of maintenance in terms of main maintenance activities. The value of maintenance_category shall be one of the following: - adjust; - refit; - repair; - replace; - service; - user_defined_category. - **4.2.100.1.1 adjust:** the descriptor which specifies that the main activity of the maintenance task is the adjustment of a product or its components. - **4.2.100.1.2 refit:** the descriptor which specifies that the main activity of the maintenance task is the refit of a product or its components. - **4.2.100.1.3 repair:** the descriptor which specifies that the main activity of the maintenance task is the repair of a product or its components. - **4.2.100.1.4 replace:** the descriptor which specifies that the main activity of the maintenance task is the replacement of a product or its components. - **4.2.100.1.5 service:** the descriptor which specifies that the main activity of the maintenance task is to service a product or its components. - **4.2.100.1.6 user_defined_category:** the descriptor, set by the user, which specifies the maintenance category, if different from the other options. ### 4.2.100.2 maintenance_related_failures The maintenance related failures attribute specifies the failures which are related to the maintenance. #### 4.2.101 Mass A Mass is a type of Measure_with_unit (see 4.2.104) where the physical quantity is a mass as defined in ISO 31 (clause 2). The data associated with a Mass are the following: - mass_unit. The mass_unit attribute specifies all the units which can be used for mass. # 4.2.102 Mass_weight_inertia A Mass_weight_intertia is a type of Physical_definition (see 4.2.135) and specifies the high level concept for all the definitions (see 3.8.43) which are attributable to mass, weight and inertia of the mechanical product. The data associated with a Mass_weight_inertia are the following: - centre_of_gravity; - defined for; - inertia; - mass; - weight. ## 4.2.102.1 centre_of_gravity The centre_of_gravity attribute specifies the centre of gravity of the mechanical product as a point in a cartesian coordinate system. ### **4.2.102.2** defined_for The defined_for attribute specifies a set of one to many mechanical products for which mass, weight, inertia and centre of gravity are defined. #### 4.2.102.3 inertia The inertia attribute specifies the moment of inertia (see 3.8.79) of the mechanical product, if applicable. ### 4.2.102.4 mass The mass attribute specifies the mass of the mechanical product. ### 4.2.102.5 weight The weight attribute specifies the weight of the mechanical product and is derived from mass. ## 4.2.103 Material_property A Material_property specifies the high level concept and data for all types of material properties. The Material_property is the supertype for Gas_material_property (see 4.2.64), Liquid_material_property (see 4.2.85) and Solid_material_property (see 4.2.179). The data associated with a Material_property are the following: - description; - version id. # **4.2.103.1** description The description attribute specifies a general description of the material and its properties in text format. ### 4.2.103.2 version_id The version_id attribute specifies an identification label for a set of material properties. ### 4.2.104 Measure with unit A Measure_with_unit is the specification of a physical quantity as defined in ISO 31 (clause 2). Each Measure_with_unit may be one of the following: a Density (see 4.2.31), a Dilatation (see 4.2.39), a Heat_capacity (see 4.2.70), an Inertia_moment (see 4.2.73), a Length (see 4.2.78), a Mass (see 4.2.101), a Plane_angle (see 4.2.141), a Power (see 4.2.142), a Pressure (see 4.2.144), a Ratio (see 4.2.160), a Stress (see 4.2.184), a Surface_tension (see 4.2.187), a Temperature (see 4.2.200), a Thermal_conductivity (see 4.2.202), a Time (see 4.2.203), and a Viscosity (see 4.2.212). The data associated with a Measure_with_unit are the following: - qualifier; - value. ## 4.2.104.1 qualifier The qualifier attribute specifies additional information in text format which describes the scope of the value. Aspects such as normalisation, correction, averaging, measured/predicted/estimated can be specified using the qualifier attribute. #### 4.2.104.2 value The value attribute specifies the value of the physical quantity when expressed in the specified units. ### 4.2.105 Mechanical_component A Mechanical_component is a type of Mechanical_product_component (see 4.2.112) and specifies the high level concept for all the mechanical components (see 3.8.98) which need to be defined. The data associated with a Mechanical_component are the following: mechanical_component_type. The mechanical_component_type attribute specifies the type of the mechanical component. The value of mechanical_component_type shall be one of the following: - cylinder; - cylinder_liner; - exhaust_valve; - inlet_valve; - piston; - user_defined_mechanical_component. - **4.2.105.1 cylinder:** the descriptor which specifies that the mechanical component is of type cylinder. - **4.2.105.2 cylinder_liner:** the descriptor which specifies that the mechanical component is of type cylinder liner. - **4.2.105.3 exhaust_valve:** the descriptor which specifies that the mechanical component is of type exhaust valve. - **4.2.105.4** inlet_valve: the descriptor which specifies that the mechanical component is of type inlet valve. - **4.2.105.5** piston: the descriptor which specifies that the mechanical component is of type piston. - **4.2.105.6** user_defined_mechanical_component: the descriptor, set by the user, which specifies the type of mechanical component if different from the other options. ### 4.2.106 Mechanical_connection A Mechanical_connection is a type of Mechanical_product_connection (see 4.2.113) which specifies the connection between two mechanical components (see 3.8.98). The data associated with a Mechanical_connection are the following: - connection_type. The connection_type attribute specifies the type of mechanical connection. The value of the connection_type shall be one of the following: - shaft_bearing_interface; -
shaft_component_connection; - shaft_shaft_connection. - **4.2.106.1 shaft_bearing_interface:** the descriptor which specifies that the mechanical connection is an interface between a shaft and a bearing. - **4.2.106.2 shaft_component_connection:** the descriptor which specifies that the mechanical connection is between a shaft and another component type. - **4.2.106.3 shaft_shaft_connection:** the descriptor which specifies that the mechanical connection is between two shafts. ## 4.2.107 Mechanical_equipment A Mechanical_equipment is a type of MP_equipment (see 4.2.122) which specifies the high level concept for all the ship's mechanical equipments (see 3.8.100) which need to be defined. The data associated with a Mechanical_equipment are the following: ``` type_of. ``` The type_of attribute specifies the type_of mechanical equipment. ### 4.2.108 Mechanical_machinery A Mechanical_machinery is a type of Machinery (see 4.2.88) and specifies the high level concept for all types of mechanical machinery (see 3.8.101) which need to be defined. The data associated with a Mechanical_machinery are the following: ``` mechanical_machinery_type. ``` The mechanical_machinery_type attribute specifies the type of mechanical machinery. The value of mechanical_machinery_type shall be one of the following: - reciprocating_machinery; - rotating_machinery. - **4.2.108.1** reciprocating_machinery: the descriptor which specifies that the mechanical machinery is of type reciprocating machinery. - **4.2.108.2 rotating_machinery:** the descriptor which specifies that the mechanical machinery is of type rotating machinery. # 4.2.109 Mechanical_machinery_composition A Mechanical_machinery_composition is a type of Product_composition (see 4.2.148) and specifies the high level concept for all the product composition (see 3.8.26) data which are attributable to all types of mechanical machinery. The data associated with a Mechanical_machinery_composition are the following: - defined for; - list_of_auxiliary_systems. ### 4.2.109.1 defined for The defined_for attribute specifies a set of one to many mechanical machinery for which the definitions are defined. # 4.2.109.2 list_of_auxiliary_systems The list_of_auxiliary_systems attribute specifies all the auxiliary systems (see 3.8.11) needed for the mechanical machinery. The list_of_auxiliary_systems is a DERIVED attribute from the higher level product structure definitions. ### 4.2.110 Mechanical_machinery_identification A Mechanical_machinery_identification is a type of MP_equipment_identification (see 4.2.124) and specifies the concept for collecting all the definitions which are attributable to the identification of all types of mechanical machinery. The data associated with a Mechanical_machinery_identification are the following: - defined_for; - licence_number; - licensor. ### **4.2.110.1** defined_for The defined_for attribute specifies a set of one to many mechanical machinery for which the definitions are defined. ### 4.2.110.2 licence_number The licence_number attribute specifies the machinery manufacturing licence number in the form of a label. #### 4.2.110.3 licensor The licensor attribute specifies the organisation under whose licence the machinery is being manufactured. ### 4.2.111 Mechanical_product A Mechanical_product is a type of Item (see 4.2.74) which provides the high level concept for all the mechanical products (see 3.8.103) which need to be defined or described. The data associated with a Mechanical_product are the following: - standard definition; - standard_name; - task in context; - version id. ## 4.2.111.1 standard_definition The standard_definition attribute specifies a textual definition of the mechanical product. The standard definition shall be according to this part of ISO 10303. ### **4.2.111.2 standard_name** The standard_name attribute specifies the standard name of the mechanical product. The standard name shall be according to this part of ISO 10303. ### **4.2.111.3** task_in_context The task_in_context attribute specifies the tasks which are related to this mechanical product by referencing the Task (see 4.2.189) application object. #### 4.2.111.4 version id The version_id attribute specifies a simple mechanism for version identification of the mechanical product. ### 4.2.112 Mechanical_product_component A Mechanical_product_component is a type of Mechanical_product (see 4.2.111) which specifies the high level concept for all the components (see 3.8.25) which need to be defined or described. The data associated with a Mechanical_product_component are the following: ``` part_of. ``` The part_of attribute specifies the belonging of the component to either a mechanical system (see 3.8.104) or a mechanical equipment (see 3.8.58). ### 4.2.113 Mechanical_product_connection A Mechanical_product_connection is a type of Product_connection (see 4.2.149) and a type of Mechanical_product_relationship (see 4.2.116) and specifies the high level concept for all the definitions which relate to connection (see 3.8.34) of a mechanical product to another item. The data associated with a Mechanical_product_connection are the following: - connecting_components; - connection characteristics; - connection_specifications; - connector_1; - connector_2. ## 4.2.113.1 connecting_components The connecting_components attribute specifies all the connecting components (see 3.8.33) required in order to realise the connection. #### 4.2.113.2 connection characteristics The connection_characteristics attribute specifies all the operational and functional characteristics for the connection. ### 4.2.113.3 connection_specifications The connection_specifications attribute specifies all the engineering specifications (geometric, non-geometric, installation procedure, ...) for the connection. #### 4.2.113.4 connector 1 The connector_1 attribute specifies the first connector (see 3.8.35) for the connection. #### 4.2.113.5 connector_2 The connector_2 attribute specifies the second connector (see 3.8.35) for the connection. ### 4.2.114 Mechanical_product_drawing A Mechanical_product_drawing is a type of Mechanical_product_representation (see 4.2.117) and specifies the geometric representation of mechanical product in the form of one to many CAD drawings together with identification of the drawing configuration. The data associated with a Mechanical_product_drawing are the following: - defined for: - drawing; - drawing_configurations. #### 4.2.114.1 defined for The defined_for attribute specifies a set of one to many mechanical products for which drawing is defined. ## 4.2.114.2 drawing The drawing attribute specifies the representation of mechanical product in the form of a CAD drawing. This is supported through use of a Geometric_representation_item (see 4.2.68) as defined in ISO 10303-42. ## 4.2.114.3 drawing_configurations The drawing_configurations attribute specifies all the information which is necessary for identification of a drawing ## 4.2.115 Mechanical_product_general_characteristic A Mechanical_product_general_characteristic is a type of Definition (see 4.2.30) and specifies the high level concept for all the definitions which are attributable to the general characteristics (see 3.8.77) of the mechanical product. The data associated with a Mechanical_product_general_characteristic are the following: - defined for; - functions; - mass_weight_inertia; - material; - overall_dimensions. #### **4.2.115.1** defined_for The defined_for attribute specifies a set of one to many mechanical products for which the general characteristics are defined. #### **4.2.115.2** functions The functions attribute specifies the functionality of the mechanical product through referencing the Function_definition (see 4.2.61) application object. ### 4.2.115.3 mass_weight_inertia The mass_weight_inertia attribute specifies the mass_related data through referencing the Mass_weight_inertia (see 4.2.102) application object. #### 4.2.115.4 material The material attribute specifies the material_related data through referencing the Product_material (see 4.2.153) application object. ### 4.2.115.5 overall_dimensions The overall_dimensions attribute specifies the overall dimensions of the product through referencing the Overall_dimension (see 4.2.132) application object. ## 4.2.116 Mechanical product relationship A Mechanical_product_relationship defines the relationship and association between two mechanical products. The data associated with a Mechanical product relationship are the following: ``` major_aspect_of_relationship; mechanical_product_1; mechanical_product-2. ``` ## 4.2.116.1 major_aspect_of_relationship The major_aspect_of_relationship specifies a description of how the two mechanical products are related together. ### 4.2.116.2 mechanical_product_1 The mechanical_product_1 attribute specifies the first mechanical product which takes part in the relationship. ### 4.2.116.3 mechanical_product_2 The mechanical_product_2 attribute specifies the second mechanical product which takes part in the relationship. ### 4.2.117 Mechanical_product_representation A Mechanical_product_representation is a type of Geometric_definition (see 4.2.67) and specifies the concept for detailed geometry of a mechanical product. A Mechanical_product_representation is either a Mechanical_product_shape_representation (see 4.2.118) or a Mechanical_product_drawing (see 4.2.114). ### 4.2.118 Mechanical_product_shape_representation A Mechanical_product_shape_representation is a type of Mechanical_product_representation (see 4.2.117) and specifies the external shape of a mechanical product. The data associated with a Mechanical product shape representation are the following: - defined for; - shape_solid. ### 4.2.118.1 defined for The defined_for attribute specifies a set of one to many mechanical products for which shape is defined. ## **4.2.118.2 shape_solid** The shape_solid attribute specifies the external shape representation of the
mechanical product in the form of a solid model (see 3.8.144). The shape representation is supported by Solid_model (see 4.2.180). ## 4.2.119 Mechanical_system A Mechanical_system is a type of Mechanical_product (see 4.2.111) which provides the high level concept for all the mechanical systems (see 3.8.104) which need to be defined or described. The data associated with a Mechanical_system are the following: - functionality. The functionality attribute specifies the basic function of a mechanical system. The value of functionality shall be one of the following: - electric_power_generation; - mechanical_power_generation; - mechanical_power_transmission; - propulsion; - steam_generation; - user_defined_functionality. - **4.2.119.1 electric_power_generation:** the descriptor which specifies the underlying functionality of the system to be electric power generation. - **4.2.119.2 mechanical_power_generation:** the descriptor which specifies the underlying functionality of the system to be mechanical power generation. - **4.2.119.3 mechanical_power_transmission:** the descriptor which specifies the underlying functionality of the system to be mechanical power transmission. - **4.2.119.4 propulsion:** the descriptor which specifies the underlying functionality of the system to be propulsion. - **4.2.119.5 steam_generation:** the descriptor which specifies the underlying functionality of the system to be steam generation. - **4.2.119.6** user_defined_functionality: the descriptor, set by the user, which specifies the underlying function of the system if different from the other options. ### 4.2.120 Mechanical_transmission_system A Mechanical_transmission_system is a type of Mechanical_system (see 4.2.119) which specifies the high level concept for all the mechanical transmission systems (see 3.8.105) which need to be defined. The data associated with a Mechanical transmission system are the following: The type_of attribute specifies the type of transmission system. ## 4.2.121 Metallic_impurity A Metallic_impurity specifies the name and level of each metallic-type impurity. The data associated with a Metallic_impurity are the following: - metal name; - metallic_content_percent. ## **4.2.121.1** metal_name The metal_name attribute specifies the name of the metal. The value of metal_name shall be one of the following: - iron; - potassium; - sodium; - user_defined_metal. - **4.2.121.1.1 iron:** the descriptor which specifies that the metallic impurity is iron. - **4.2.121.1.2 potassium:** the descriptor which specifies that the metallic impurity is potassium. - **4.2.121.1.3 Sodium:** the descriptor which specifies that the metallic impurity is sodium. - **4.2.121.1.4 user_defined_metal:** the descriptor, set by the user, which specifies the name of a metal if different from the other options. ### 4.2.121.2 metallic_content_percent The metallic_content_percent specifies the level of impurity in percentage. ### 4.2.122 MP_equipment A MP_equipment is a type of Mechanical_product (see 4.2.111) and specifies the high level concept for all the equipments (see 3.8.58) which need to be defined. The data associated with a MP_equipment are the following: - name_manufacturer_specific; - name_user_specific. ## 4.2.122.1 name_manufacturer_specific The name_manufacturer_specific attribute specifies the name of the equipment as used by the manufacturer. ## 4.2.122.2 name_user_specific The name_user_specific attribute specifies the name of the equipment according to the user. ## 4.2.123 MP_equipment_general_characteristic A MP_equipment_general_characteristic is a type of Mechanical_product_general_characteristic (see 4.2.115) and specifies the high level concept for all the general characteristics data which need to be attributed to all the equipments. The data associated with a MP_equipment_general_characteristic are the following: - date_of_manufacture; - date_placed_in_service; - function; - type_of_duty. ### 4.2.123.1 date_of_manufacture The date_of_manufacture attribute specifies the date when the equipment was manufactured. ### 4.2.123.2 date_placed_in_service The date_placed_in_service attribute specifies the date when the equipment was initially placed in service and operation. #### 4.2.123.3 function The function attribute specifies the underlying function (see 3.8.70) of the equipment. The value of function shall be one of the following: - electric_generation; - fluid_distribution; - fluid mover; - heat_exchange; - lifting; - prime_mover; - user defined. - **4.2.123.3.1 electric_generation:** the descriptor which specifies the underlying role of the equipment as an electric generator. - **4.2.123.3.2 fluid_distribution:** the descriptor which specifies the underlying role of the equipment as a fluid distributor (see 3.8.65). - **4.2.123.3.3 fluid_mover:** the descriptor which specifies the underlying role of the equipment as being a fluid mover (see 3.8.66). - **4.2.123.3.4 heat_exchange:** the descriptor which specifies the underlying role of the equipment as being a heat exchanger (see 3.8.78). - **4.2.123.3.5 lifting:** the descriptor which specifies the underlying role of the equipment as being lifting equipment. - **4.2.123.3.6 prime_mover:** the descriptor which specifies the underlying role of the equipment as being a prime mover (see 3.8.120). - **4.2.123.3.7 user_defined:** the descriptor, set by the user, which specifies the function of the equipment if different from the other options. ### 4.2.123.4 type_of_duty The type_of_duty attribute specifies the underlying duty of equipment. The value of type_of_duty shall be one of the following: - auxiliary_equipment; - deck_equipment; - main_equipment. - **4.2.123.4.1** auxiliary_equipment: the descriptor which specifies the equipment to be one of the ship's auxiliary equipment. - **4.2.123.4.2 deck_equipment:** the descriptor which specifies the equipment to be one of the ship's deck machinery. - **4.2.123.4.3** main_equipment: the descriptor which specifies the equipment to be one of the ship's main equipment. ## 4.2.124 MP_equipment_identification A MP_equipment_identification is a type of Product_identification (see 4.2.152) and specifies the concept for collecting all the definitions which are attributable to the identification of the equipment. The data associated with a MP_equipment_identification are the following: - acquisition-code; - category_code; - id manufacture specific; - id_user_specific; - model_number; - model_type; - nameplate_data; - place_of_manufacture. ## 4.2.124.1 acquisition_code The acquisition_code attribute specifies the equipment acquisition code (see 3.8.1). ## 4.2.124.2 category_code The category_code attribute specifies the category code of the equipment. ## 4.2.124.3 id_manufacturer_specific The id_manufacturer_specific attribute specifies the equipment identification by the manufacturer or supplier. ### 4.2.124.4 id_user_specific The id user specific attribute specifies the equipment identification number by user. #### **4.2.124.5** model_number The model_number attribute specifies the model number of the equipment. ### **4.2.124.6** model_type The model_type attribute specifies the model type of the equipment. ### 4.2.124.7 nameplate_data The nameplate_data attribute specifies the information content as appears on the equipment nameplate in a text format. ### 4.2.124.8 place_of_manufacture The place_of_manufacture attribute specifies the place of manufacture of the equipment. ### 4.2.125 MP_piping_system A MP_piping_sytem is a type of Mechanical_system (see 4.2.119) which provides the high level concept for all the piping systems which need to be defined. The data associated with a MP_piping_system are the following: ``` piping_system_type. ``` The piping_system_type attribute specifies the type of the piping system. The value of piping system type shall be one of the following: - bilge_water_system; - compressed_air_system; - cooling_water_system; - fresh_water_system; - fuel_injection_system; - fuel oil system; - lube_oil_system; - user_defined_piping_system. - **4.2.125.1** bilge_water_system: the descriptor which specifies that the piping system is a bilge water system. - **4.2.125.2 compressed_air_system:** the descriptor which specifies that the piping system is a compressed air system. - **4.2.125.3 cooling_water_system:** the descriptor which specifies that the piping system is a cooling water system. - **4.2.125.4 fresh_water_system:** the descriptor which specifies that the piping system is a fresh water system. - **4.2.125.5 fuel_injection_system:** the descriptor which specifies that the piping system is a fuel injection system. - **4.2.125.6 fuel_oil_system:** the descriptor which specifies that the piping system is a fuel oil system. - **4.2.125.7 lube_oil_system:** the descriptor which specifies that the piping system is a lubrication system. - **4.2.125.8 user_defined_piping_system:** the descriptor, set by the user, which specifies the type of piping system if different from the other options. ### 4.2.126 Operating_point An Operating_point specifies a machinery operating condition in terms of machinery power, rotational speed and efficiency. This operating condition has significance from the machinery function design and operational point of view. The data associated with an Operating_point are the following: - description; - efficiency; - power; - rotational_speed. ## **4.2.126.1** description The description attribute specifies a textual description of the operating point. ## **4.2.126.2** efficiency The efficiency attribute specifies the machinery efficiency at the operating point. ### 4.2.126.3 power The power attribute specifies the machinery power at the operating point. ## 4.2.126.4 rotational speed The rotational_speed attribute specifies the machinery rotational speed at the operating point. # 4.2.127 Operation_task An Operation_task is a type of Task (see 4.2.189) and specifies the concept for collecting
data which are attributable to an operation task. The data associated with an Operation_task are the following: ``` - type_of_task. ``` The type_of_task attribute specifies the type of operation task in a text format. ## 4.2.128 Operational_characteristic An Operational_characteristic is a type of Functional_characteristic (see 4.2.60) and specifies the high level concept for all the definitions (see 3.8.43) which are attributable to operational aspects of a mechanical product. The data associated with an Operational_characteristic are the following: - defined for; - operation_status. #### 4.2.128.1 defined for The defined_for attribute specifies a set of one to many mechanical products for which operational data are defined. ### 4.2.128.2 operation_status The operation_status attribute specifies the operating condition of the mechanical product in a text format. ## 4.2.129 Organization An Organization specifies the details of the referenced organisation. It is used as defined in ISO 10303-41. ## 4.2.130 Organizational_project An Organizational_project specifies the details of the referenced project. It is used as defined in ISO 10303-41. ## **4.2.131** Other_task An Other_task is a type of Task (see 4.2.189) and specifies the concept for collecting data which are attributable to any user defined task not explicitly defined in other application objects. The data associated with an Other_task are the following: ``` - type_of_task. ``` The type_of_task attribute specifies the type of the task in a text format. #### 4.2.132 Overall dimension An Overall_dimension is a type of Geometric_definition (see 4.2.67) and specifies and collects the overall length, breadth and height of a mechanical product. The data associated with an Overall_dimension are the following: - defined for; - overall_breadth; - overall height; - overall_length. ### **4.2.132.1** defined_for The defined_for attribute specifies a set of one to many mechanical products for which dimensional data are defined. ### 4.2.132.2 overall_breadth The overall_breadth attribute specifies the overall breadth of the mechanical product. ### 4.2.132.3 overall_height The overall_height attribute specifies the overall height of the mechanical product. ## 4.2.132.4 overall_length The overall_length attribute specifies the overall length of the mechanical product. #### 4.2.133 Person A Person specifies the details of a person which needs to be identified. It is used as defined in ISO 10303-41. ## 4.2.134 Person_and_organization A Person_and_organization specifies the details of a person and his/her affiliated organisation. It is used as defined in ISO 10303-41. # 4.2.135 Physical_definition A Physical_definition is a type of Definition (see 4.2.30) and specifies the high level concept for all the definitions attributable to the physical (see 3.8.111) aspects of a mechanical product. ## 4.2.136 Pipe A Pipe is a type of Piping_component (see 4.2.137) and specifies the data representation concept for all the pipes which need to be defined. The data associated with a pipe are the following: ``` pipe_type. ``` The pipe_type attribute specifies the type of pipe in text format. ### 4.2.137 Piping_component A Piping_component is a type of Mechanical_product_component (see 4.2.112) and specifies the high level concept for all the piping components which need to be defined. The data associated with a Piping_component are the following: ``` piping_component_type. ``` The piping_component_type attribute specifies the type of piping component. ## 4.2.138 Piping_connection A Piping_connection is a type of Mechanical_product_connection (see 4.2.113) which specifies the connection between a mechanical connector (see 3.8.99) and a piping connector (see 3.8.112) or between two piping connectors. The data associated with a Piping connection are the following: ``` connection_type. ``` The connection_type attribute specifies the type of piping connection. The value of the connection_type shall be one of the following: - butt; - flanged; - flared; - screwed; - socketed; - union; - user_defined_piping_connection_type; - welded. - **4.2.138.1** butt: the descriptor which specifies that the piping connection is of type butt welded. - **4.2.138.2 flanged:** the descriptor which specifies the piping connection is of type flanged. - **4.2.138.3** flared: the descriptor which specifies the piping connection is of type flared. - **4.2.138.4 screwed:** the descriptor which specifies the piping connection is of type screwed. - **4.2.138.5 socketed:** the descriptor which specifies the piping connection is of type socketed. - **4.2.138.6** union: the descriptor which specifies the piping connection is of type union. - **4.2.138.7** user_defined_piping_connection_type: the descriptor, set by the user, which specifies the type of piping connection if different from the other options. - **4.2.138.8 welded:** the descriptor which specifies the piping connection is of type welded. ## 4.2.139 Piping_equipment A Piping_equipment is a type of MP_equipment (see 4.2.122) which provides the high level concept for all the ship's piping equipment (see 3.8.113) which needs to be defined. The data associated with a Piping_equipment are the following: ``` piping_equipment_type. ``` The piping_equipment_type attribute specifies the basic types of piping equipment. The value of piping_equipment_type shall be one of the following: - pressure_vessel; - tank: - valve; - user_defined_piping_equipment_type. - **4.2.139.1 pressure_vessel:** the descriptor which specifies that the piping equipment is a pressure vessel. - **4.2.139.2** tank: the descriptor which specifies that the piping equipment is a tank. - **4.2.139.3 valve:** the descriptor which specifies that the piping equipment is a valve. - **4.2.139.4** user_defined_piping_equipment_type: the descriptor, set by the user, which specifies the type of piping equipment if different from the other options. #### 4.2.140 Piston A Piston is a type of Mechanical_component (see 4.2.105) and specifies the data representation concept for all the pistons which need to be defined. The data associated with a Piston are the following: ``` - piston type. ``` The piston_type attribute specifies the type of piston in text format. ### **4.2.141** Plane_angle A Plane_angle is a type of Measure_with_unit (see 4.2.104) where the physical quantity is a plane angle as defined in ISO 31 (clause 2). The data associated with a Plane_angle are the following: ``` - plane_angle_unit. ``` The plane_angle_unit attribute specifies all the units in which plane angles are measured. #### 4.2.142 Power A Power is a type of Measure_with_unit (see 4.2.104) where the physical quantity is power (energy per time). The data associated with a Power are the following: ``` - power unit. ``` The power_unit attribute specifies all the units in which the physical quantity of power is measured. ### 4.2.143 Power_speed_pitch_point A Power_speed_pitch_point is a type of Operating_point (see 4.2.126) and specifies an operating condition of a screw propeller in terms of its power, rotational speed, pitch and efficiency. The data associated with a Power_speed_pitch_point are the following: ``` - pitch. ``` The pitch attribute specifies the propeller pitch for the operating condition. #### **4.2.144** Pressure A Pressure is a type of Measure_with_unit (see 4.2.104) where the physical quantity is pressure (force per area). The data associated with a Pressure are the following: ``` - pressure_unit. ``` The pressure_unit attribute specifies all the units in which the physical quantity of pressure is measured. ## 4.2.145 Process_equipment A Process_equipment is a type of MP_equipment (see 4.2.122) which specifies the high level concept for all the ship's process equipments (see 3.8.121) which need to be defined. The data associated with a Process_equipment are the following: process_equipment_type. The process_equipment_type attribute specifies the basic type of the process equipment. ## 4.2.146 Product_anomaly A Product_anomaly is a type of Definition (see 4.2.30) and specifies the high level concept for all the definitions attributable to all types of product anomalies (see 3.8.6). The data associated with a Product_anomaly are the following: - anomaly_cause; - anomaly_description; - anomaly_related_tasks; - date_anomaly_discovered; - date_anomaly_happened; - date_anomaly_rectified. ### 4.2.146.1 anomaly_cause The anomaly_cause attribute specifies the cause of the anomaly in text format. ### 4.2.146.2 anomaly_description The anomaly_description attribute specifies a description of the anomaly in text format. ## 4.2.146.3 anomaly_related_tasks The anomaly_related_tasks attribute specifies a set of tasks which relate to an anomaly. ## 4.2.146.4 date_anomaly_discovered The date anomaly discovered attribute specifies the date at which the anomaly has been discovered. ## 4.2.146.5 date_anomaly_happened The date_anomaly_happened attribute specifies the date at which the anomaly has occurred. ## 4.2.146.6 date_anomaly_rectified The date_anomaly_rectified attribute specifies the date at which the anomaly has been rectified through corrective action. ## 4.2.147 Product_assembly A Product_assembly is a type of Product_structure_definition (see 4.2.157) which specifies the high level concept for all the information which defines the assembly of the mechanical product . The data associated with a Product_assembly are the following: - assembly_defined_by_relationships; - defined for; - method_of_assembly. ### 4.2.147.1 assembly_defined_by_relationships The assembly_defined_by_relationships attribute specifies all the relationships between the constituent items of the mechanical product. ### **4.2.147.2 defined_for** The defined_for attribute specifies a set of one to many mechanical products for which assembly data are defined. ### 4.2.147.3 method_of_assembly The method_of_assembly attribute specifies the information which
describes the method of assembly and disassembly in the form of documents. ### 4.2.148 Product_composition A Product_composition is a type of Product_structure_definition (see 4.2.157) which specifies the high level concept for all the definitions which relate to the composition (see 3.8.26) of a mechanical product The data associated with a Product composition are the following: - composed_of; - defined for; - no of each component. ## **4.2.148.1** composed_of The composed_of attribute specifies details of a set of mechanical products which are members of composition (see 3.8.26) for this mechanical product. #### **4.2.148.2** defined for The defined_for attribute specifies a set of one to many mechanical products for which product composition data are defined. ## 4.2.148.3 no_of_each_component The no_of_each_component attribute specifies the number of each mechanical product in the composition. The no_of_each_component is a DERIVED attribute. #### 4.2.149 **Product_connection** A Product_connection specifies the high level concept for all the information which define the connection (see 3.8.34) of two mechanical products. The data associated with a Product_connection are the following: - connection_type; - relates_to. ### 4.2.149.1 connection_type The connection_type attribute specifies the type of connection. The value of connection_type shall be one of the following: - electrical_connection; - mechanical_connection; - piping_connection; - structural_connection; - user_defined_connection_type. - **4.2.149.1.1 electrical_connection:** the descriptor which specifies that the connection is of type electrical connection. - **4.2.149.1.2 mechanical_connection:** the descriptor which specifies that the connection is of type mechanical connection. - **4.2.149.1.3 piping_connection:** the descriptor which specifies that the connection is of type piping connection. - **4.2.149.1.4 structural_type:** the descriptor which specifies that the connection is of type structural type. - **4.2.149.1.5 user_defined_connection_type:** the descriptor, set by the user, which specifies the type of connection if different from the other options. #### **4.2.149.2** relates_to The relates_to attribute specifies the relation between a product connection and a product connectivity (see 3.8.124) through reference to Product_connectivity (see 4.2.150) application object. ### 4.2.150 **Product_connectivity** A Product_connecitivity is a type of Product_structure_definition (see 4.2.157) and specifies the high level concept for all the definitions which relate to product connectivity (see 3.8.124) of a mechanical product. The data associated with a Product_connectivity are the following: - defined_for; - no_of_connections; - product_connections; - product_connectivity_specifications; - product_is_connected_to. #### **4.2.150.1** defined for The defined_for attribute specifies a set of one to many mechanical products for which connectivity data are defined. #### 4.2.150.2 no_of_connections The no_of_connections attribute specifies the total number of connections of the mechanical product. The no_of_connections is a DERIVED attribute. ### 4.2.150.3 product_connections The product_connections attribute specifies all types of connection for the product by referencing the Product_connection (see 4.2.149) application object. ### 4.2.150.4 product_connectivity_specifications The product_connectivity_specifications attribute specifies the overall specification of the connectivity by referencing external documents. ## 4.2.150.5 product_is_connected_to The product_is_connected_to attribute specifies all the mechanical products which are connected to this mechanical product. #### 4.2.151 Product_context A Product_context is a type of Configuration definition (see 4.2.12) and specifies the data which define the context within which a mechanical product is used or considered. The data associated with a Product_context are the following: - defined_for; - owner_in_context; - project_in_context; - ship_in_context. #### **4.2.151.1** defined for The defined_for attribute specifies a set of one to many mechanical products for which the context data are defined. #### **4.2.151.2** owner in context The owner_in_context attribute specifies the organisations which own the mechanical product. ### 4.2.151.3 project_in_context The project_in_context attribute specifies the projects associated with the mechanical product. ### **4.2.151.4 ship_in_context** The ship_in_context attribute specifies the ships associated with the mechanical product. ### 4.2.152 **Product_identification** A Product_identification is a type of Configuration _definition (see 4.2.12) and specifies the high level data needed for identification of a mechanical product. The data associated with a Product_identification are the following: - defined_for; - manufacturer; - serial number; - tag_number; - user_id. ### **4.2.152.1 defined_for** The defined_for attribute specifies a set of one to many mechanical products for which identification data are defined. #### 4.2.152.2 manufacturer The manufacturer attribute specifies the details of the organisation which is the manufacturer of the mechanical product. #### **4.2.152.3** serial number The serial number attribute specifies the manufacturer's serial number in the form of a label. ### **4.2.152.4** tag_number The tag_number attributes specifies the mechanical product's tag number in the form of a label. #### 4.2.152.5 user id The user_id attribute specifies a user-defined identification in text format. ### 4.2.153 Product material A Product_material is a type of Physical_definition (see 4.2.135) which provides the concept for identification of the solid materials from which a mechanical product is made of. The data associated with a Product_material are the following: - defined for; - documented_definitions; - material code; - material_description; - material name. ### **4.2.153.1 defined_for** The defined_for attribute specifies a set of one to many mechanical products for which material data are defined. ### 4.2.153.2 documented_definitions The documented_definitions attribute specifies references to the documents which define the properties of the material. #### **4.2.153.3** material code The material_code attribute specifies an identification code for the material in the form of a label. ## 4.2.153.4 material_description The material description attribute specifies a description of the material in a text form. ### 4.2.153.5 material_name The material_name attribute specifies the name of the material in the form of a label. # 4.2.154 Product_participation A Product_participation is a type of Product_structure_definition (see 4.2.157) which specifies the high level concept for all the definitions which relate to the belonging of a mechanical product to another higher level mechanical product in the decomposition hierarchy (see 3.8.42). The data associated with a Product participation are the following: - defined for; - product_is_part_of. #### **4.2.154.1** defined for The defined_for attribute specifies a set of one to many mechanical products for which participation data are defined. ### 4.2.154.2 product_is_part_of The product_is_part_of attribute specifies the higher level mechanical product in the decomposition hierarchy, which this mechanical product is part of it. ### 4.2.155 Product placement A Product_placement is a type of Product_structure_definition (see 4.2.157) which specifies the high level concept for all the definitions which relate to position and orientation of mechanical product. The data associated with a Product_placement are the following: - defined_for; - orientation; - placed_in; - place_by_coordinate; - ship side. ### **4.2.155.1 defined_for** The defined_for attribute specifies a set of one to many mechanical products for which product placement and location data are defined. #### **4.2.155.2** orientation The orientation attribute specifies the orientation of the mechanical product in a text format. ## 4.2.155.3 placed_in The placed_in attribute specifies the compartment and/or space of the ship within which the mechanical product is located through a reference to Ship_space (see 4.2.178) application object. ### 4.2.155.4 place_by_coordinate The place_by_coordinate attribute specifies the position of the mechanical product within the context of a local coordinate system. ## **4.2.155.5 ship_side** The ship_side attribute specifies the position and/or orientation of the mechanical product according to the side of the ship where it is located. The value of ship_side shall be one of the following: - aft; - fore: - user_defined_side_of_ship. - **4.2.155.5.1** aft: The descriptor which specifies the side of the ship as aft (see 3.8.3). - **4.2.155.5.2 fore:** The descriptor which specifies the side of ship as fore (see 3.8.67). - **4.2.155.5.3 user_defined_side_of_ship:** The descriptor, set by the user, which specifies the side of ship if different from the other options. #### 4.2.156 Product_status A Product_status is a type of configuration_definition (see 4.2.12) and specifies the data which define the life cycle status of a mechanical product. The data associated with a Product_status are the following: - defined for; - life_cycle_phase; - reality_status. ### **4.2.156.1** defined for The defined_for attribute specifies a set of one to many mechanical products for which product status data are defined. ## 4.2.156.2 life_cycle_phase The life_cycle_phase attribute specifies the life cycle phase of the mechanical product. The value of life_cycle_phase shall be one of the following: - design phase; - disposal_phase; - installation_phase; - manufacturing_phase; - operation_phase; - specification_phase. - **4.2.156.2.1 design_phase:** the descriptor which specifies that the product is at its design lifecycle phase. - **4.2.156.2.2 disposal_phase:** the descriptor which specifies that the product is at its disposal
phase. - **4.2.156.2.3 installation_phase:** the descriptor which specifies that the product is at its installation phase. - **4.2.156.2.4 manufacturing_phase:** the descriptor which specifies that the product is at its manufacturing phase. - **4.2.156.2.5** operation phase: the descriptor which specifies that the product is at its operation phase. - **4.2.156.2.6 specification_phase:** the descriptor which specifies that the product is at its specification phase. ### 4.2.156.3 reality_status The reality_status attribute specifies whether the mechanical product is a conceptual, planned, manufactured or disposed product. The value of reality_status phase shall be one of the following: - conceptual; - designed; - disposed; - planned; - real. - **4.2.156.3.1 conceptual:** the descriptor which specifies that the product is at concept level. - **4.2.156.3.2 designed:** the descriptor which specifies that the product is at design level. - **4.2.156.3.3 disposed:** the descriptor which specifies that the product is at the disposal stage. - **4.2.156.3.4 planned:** the descriptor which specifies that the product is at the planning stage. - **4.2.156.3.5** real: the descriptor which specifies that the product is a physically realised thing. #### 4.2.157 **Product_structure_definition** A Product_structure_definition is a type of Definition (see 4.2.30) and specifies the high level concept for all the definitions (see 3.8.43) which are attributable to product structure (see 3.8.125). The data associated with a Product_structure_definition are the following: ``` - usage_context. ``` The usage_context attribute specifies the context for the use of the product structure information. #### 4.2.158 Propulsion_system A Propulsion_system is a type of Mechanical_system (see 4.2.119) and specifies the high level concept for all the ship's propulsion systems (see 3.8.126) which need to be defined or described. The data associated with a Propulsion_system are the following: ``` propulsion_system_type. ``` The propulsion_system_type attribute specifies the type of propulsion system. The value of propulsion_system_type shall be one of the following: - electrical_propulsion_system; - mechanical_propulsion_system. - **4.2.158.1 electrical_propulsion_system:** the descriptor which specifies that the propulsion system is of type electrical and the propulsor is driven by an electric motor. - **4.2.158.2** mechanical_propulsion_system: the descriptor which specifies that the propulsion system is of type mechanical and the propulsor is driven by a prime mover via a mechanical transmission system. ### 4.2.159 RAM_characteristic A RAM_characteristic specifies the concept for collecting all the reliability, availability and maintainability characteristics (see 3.8.132) which are attributable to the RAM characteristics of a mechanical product. The data associated with the RAM_characteristic are the following: - availability_data; - defined for; - maintainability_data; - reliability_data. ## 4.2.159.1 availability_data The availability_data attribute collects all the availability-related data via referencing of the Availability (see 4.2.7) application object. ## 4.2.159.2 defined for The defined_for attribute specifies the mechanical product for which the RAM characteristics are defined. ## 4.2.159.3 maintainability_data The maintainability_data attribute collects all the maintainability-related data via referencing of the Maintainability (see 4.2.93) application object. ## 4.2.159.4 reliability_data The reliability_data attribute specifies all the reliability-related data via referencing of the Reliability (see 4.2.165) application object. #### 4.2.160 Ratio A Ratio is a type of Measure_with_unit (see 4.2.104) where the physical quantity is a ratio as defined in ISO 31 (clause 2). The data associated with a Ratio are the following: ``` - ratio unit. ``` The ratio_unit attribute specifies all the units in which the ratio of the two physical quantities, that are of the same kind, is measured. ### 4.2.161 Reciprocating_machinery A Reciprocating_machinery is a type of Mechanical_machinery (see 4.2.108) which provides the high level concept for all types of ship reciprocating machinery (see 3.8.133) which need to be defined. The data associated with a Reciprocating_machinery are the following: ``` - reciprocating_machinery_type. ``` The reciprocating_machinery_type attribute specifies the type of reciprocating machinery. The value of reciprocating_machinery_type shall be one of the following: - diesel_engine; - reciprocating compressors; - reciprocating_pump; - spark_ignition_engine; - user_defined_reciprocating_machinery_type. - **4.2.161.1 diesel_engine:** the descriptor which specifies that the reciprocating machinery is of type diesel engine. - **4.2.161.2** reciprocating_compressor: the descriptor which specifies that the reciprocating machinery is of type reciprocating compressor. - **4.2.161.3** reciprocating_pump: the descriptor which specifies that the reciprocating machinery is of type reciprocating pump. - **4.2.161.4 spark_ignition_engine:** the descriptor which specifies that the reciprocating machinery is of type spark ignition engine. - **4.2.161.5** user_defined_reciprocating_machinery_type: the descriptor, set by the user, which specifies the type of reciprocating machinery if different from the other options. # 4.2.162 Reciprocating_machinery_composition A Reciprocating_machinery_composition is a type of Mechanical_machinery_composition (see 4.2.109) and specifies the high level concept for all the product composition (see 3.8.26) data which are attributable to all types of reciprocating machinery. The data associated with a Reciprocating_machinery_composition are the following: ``` defined for; ``` ### **4.2.162.1 defined_for** The defined_for attribute specifies a set of one to many reciprocating machinery for which the composition is defined. ### 4.2.162.2 no_of_cylinders The no_of_cylinders attribute specifies the number of cylinders of the the reciprocating machinery. The no_of_cylinders is a DERIVED parameter from higher level product structure definitions. ### 4.2.163 Reciprocating_machinery_general_characteristic A Reciprocating_machinery_general_characteristic is a type of Machinery_general_characteristic (see 4.2.91) and specifies the high level concept for all the general characteristics data which need to be attributed to all types of the reciprocating machineries. The data associated with a Reciprocating_machinery_general_characteristic are the following: ``` - cylinder_cooling_method; ``` ## 4.2.163.1 cylinder_cooling_method The cylinder_cooling_method attribute specifies the cooling method for a cylinder. The value of cylinder_cooling_method shall be one of the following: ``` air_cooled; ``` - user defined cooling method; - water cooled. **4.2.163.1.1** air_cooled: the discriptor which specifies that the cylinder is cooled by air. **4.2.163.1.2 user_defined_cooling_method:** the discriptor, set by the user, which specifies the cylinder cooling method if different from the other options. ⁻ no_of_cylinders. ⁻ defined for. **4.2.163.1.3** water_cooled: the discriptor which specifies that the cylinder is cooled by water. #### **4.2.163.2** defined for The defined_for attribute specifies a set of one to many reciprocating machinery for which the definitions are defined. # 4.2.164 Reciprocating_machinery_overall_dimension A Reciprocating_machinery_overall_dimension is a type of Overall_dimension (see 4.2.132) and specifies the concept for collecting all the definitions which are attributable to the overall dimension of all types of reciprocating machinery. The data associated with a Reciprocating_machinery_overall_dimension are the following: - compression_ratio; - cylinder_bore; - defined for; - piston_stroke. ## 4.2.164.1 compression_ratio The compression_ratio attribute specifies the cylinder compression ratio (see 3.8.28) of reciprocating machinery. ## **4.2.164.2** cylinder_bore The cylinder bore attribute specifies the cylinder bore of reciprocating machinery. ### **4.2.164.3** defined_for The defined_for attribute specifies a set of one to many reciprocating machinery for which the definitions are defined. # 4.2.164.4 piston_stroke The piston_stroke attribute specifies the piston stroke of reciprocating machinery. # 4.2.165 Reliability A Reliability specifies the data which are attributable to reliability performance of a mechanical product. The data associated with a Reliability are the following: - failure_rate; - mean_time_between_failure; - mean_time_to_failure; - reliability. #### **4.2.165.1** failure_rate The failure_rate attribute specifies the reliability performance of a mechanical product in terms of its mean failure rate (see 3.7). ### 4.2.165.2 mean_time_between_failure The mean_time_between_failure attribute specifies the reliability performance of a mechanical product in terms of its mean time between failures. ### 4.2.165.3 mean_time_to_failure The mean_time_to_failure attribute specifies the reliability performance of a mechanical product in terms of its mean time to failures. ### **4.2.165.4** reliability The reliability attribute specifies the reliability of a mechanical product. ### 4.2.166 Rotating_component A Rotating_component is a type of Mechanical_product_component (see 4.2.112) and specifies the high level concept for all the rotating components which need to be defined. The data associated with a Rotating_component are the following: - rotating component type. The rotating component type specifies the type of rotating component. ## 4.2.167 Rotating_machinery A Rotating_machinery is a type of Mechanical_machinery (see 4.2.108) which provides the high level concept for all the ship rotating non-electrical machineries which need to be defined. The data associated with a Rotating machinery are the following: rotating_machinery_type. The rotating_machinery_type attribute specifies the basic
types of a rotating machinery. The value of the rotating_machinery_type shall be one of the following: - cycloidal_propeller; - gas_turbine; - screw_propeller; - steam_turbine; - supercharger; - turbocharger; - user_defined_rotating_machinery_type. - **4.2.167.1 cycloidal_propeller:** the descriptor which specifies that the rotating machinery is a cycloidal propeller. - **4.2.167.2** gas_turbine: the descriptor which specifies that the rotating machinery is a gas turbine. - **4.2.167.3 screw_propeller:** the descriptor which specifies that the rotating machinery is a screw propeller. - **4.2.167.4 steam_turbine:** the descriptor which specifies that the rotating machinery is a steam turbine. - **4.2.167.5 supercharger:** the descriptor which specifies that the rotating machinery is a supercharger. - **4.2.167.6 turbocharger:** the descriptor which specifies that the rotating machinery is a turbocharger. - **4.2.167.7 user_defined_rotating_machinery_type:** the descriptor, set by the user, which specifies the type of rotating machinery if different from the other options. ### 4.2.168 Rotational_speed A Rotational_speed is a type of Measure_with_unit (4.2.104) where the physical quantity is rotational speed. The data associated with a Rotational_speed are the following: rotational_speed_unit. The rotational_speed_unit attribute specifies all the units for the rotational speed. ## 4.2.169 Screw_propeller A Screw_propeller is a type of Rotating_machinery (see 4.2.167) and specifies the data representation concept for all the screw propellers which need to be defined. The data associated with a Screw_propeller are the following: propeller_type. The propeller_type attribute specifies the general type of propeller in text format. ### 4.2.170 Screw_propeller_composition A Screw_propeller_composition is a type of Mechanical_machinery_composition (see 4.2.109) and specifies the concept for collection of all the product composition (see 3.8.26) data which are attributable to all types of screw propellers. The data associated with a Screw_propeller_composition are the following: - defined for; - number of blades. ### **4.2.170.1** defined for The defined_for attribute specifies a set of one to many screw propellers for which composition data are defined. ### 4.2.170.2 number_of_blades The number_of_blades attribute specifies the number of blades for the propeller. The number_of_blades is a DERIVED parameter from higher level product structure definitions. ### 4.2.171 Screw_propeller_design_characteristic A Screw_propeller_design_characteristic is a type of Machinery_design_characteristic (see 4.2.90) and specifies the concept for collection of all the product design characteristics which are attributable to all types of screw propellers. The data associated with a Screw_propeller_design_characteristic are the following: - defined for; - design_points; - max_ahead_pitch; - max_astern_pitch. ### **4.2.171.1 defined_for** The defined_for attribute specifies a set of one to many screw propellers for which design characteristics are defined. ## 4.2.171.2 design_points The design_points attribute specifies a set of design operating points by referencing a Power_speed_pitch_point (see 4.2.143) application object. ### 4.2.171.3 max_ahead_pitch The max_ahead_pitch specifies the maximum pitch value for the ship ahead motion. ## 4.2.171.4 max_astern_pitch The max_astern_pitch specifies the maximum pitch value for the ship astern motion. ### 4.2.172 Screw_propeller_general_characteristic A Screw_propeller_general_characteristic is a type of MP_equipment_general_characteristic (see 4.2.123) and specifies the data representation concept for all the general characteristics (see 3.8.77) which are attributable to all types of screw propellers. The data associated with a Screw_propeller_general_characteristic are the following: - defined_for; - fit of hub to shaft; - hub_type; - pitch_control_mechanism_description; - propeller_type_by_blade_outline. - propeller_type_by_design_configuration; - propeller_type_by_duct; - propeller_type_by_pitch; - type_of_construction. ### **4.2.172.1 defined_for** The defined_for attribute specifies a set of one to many screw propellers for which the general characteristics are defined. ### 4.2.172.2 fit_of_hub_to_shaft The fit_of_hub_to_shaft attribute specifies the information on the fit of hub to shaft in text format. ## 4.2.172.3 hub_type The hub_type attribute specifies the type of hub in text format. # 4.2.172.4 pitch_control_mechanism_description The pitch_control_mechanism_description attribute specifies a description of the pitch control mechanism details, in text format. # 4.2.172.5 propeller_type_by_blade_outline The propeller type by blade outline attribute specifies the type of blade outline. The value of propeller_type_by_blade_outline shall be one of the following: - conventional; - skewed: - user_defined_blade_outline_type. - **4.2.172.5.1 conventional:** the descriptor which specifies the propeller blade outline to be of type conventional. - **4.2.172.5.2 skewed:** the descriptor which specifies the propeller blade outline to be of type skewed. - **4.2.172.5.3 user_defined_blade_outline_type:** the descriptor, set by the user, which specifies the outline type of propeller blade if different from the other options. # 4.2.172.6 propeller_type_by_design_configuration The propeller_type_by_design_configuration specifies the type of propeller according to design configuration. The value of propeller_type_by_design_configuration shall be one of the following: - contra_rotating; - conventional; - user_defined; - vane_wheel. - **4.2.172.6.1 contra_rotating:** the descriptor which specifies the type of propeller design configuration as contra-rotating. - **4.2.172.6.2 conventional:** the descriptor which specifies the type of propeller design configuration as conventional. - **4.2.172.6.3 user_defined:** the descriptor, set by the user, which specifies the type of propeller design configuration if different from the other options. - **4.2.172.6.4 vane_wheel:** the descriptor which specifies the type of propeller design configuration as vane-wheel. # 4.2.172.7 propeller_type_by_duct The propeller type by duct attribute specifies whether a propeller is of type ducted or non-ducted. The value of propeller_type_by_duct shall be one of the following: - ducted_fixed; - ducted_steerable; - non_ducted. - **4.2.172.7.1 ducted_fixed:** the descriptor which specifies that the propeller is ducted. The duct is fixed in this case. - **4.2.172.7.2 ducted_steerable:** the descriptor which specifies that the propeller is ducted. The duct is steerable in this case. - **4.2.172.7.3 non_ducted:** the descriptor which specifies that the propeller is non-ducted. # 4.2.172.8 propeller_type_by_pitch The propeller_type_by_pitch attribute specifies the type of propeller by its pitch. The value of propeller_type_by_pitch shall be one of the following: - adjustable_pitch; - controllable_pitch; - fixed_pitch. - **4.2.172.8.1** adjustable_pitch: the descriptor which specifies that the propeller pitch can be adjusted manually at a dry dock. - **4.2.172.8.2 controllable_pitch:** the descriptor which specifies that the propeller pitch can be controlled automatically. - **4.2.172.8.3 fixed_pitch:** the descriptor which specifies that the propeller pitch is fixed. # 4.2.172.9 type_of_construction The type_of_construction attribute specifies the type of construction of a screw propeller. The value of type of construction shall be one of the following: - built up; - monoblock; - user_defined_type_of_construction. - **4.2.172.9.1 built up:** the descriptor which specifies the method of construction to be of type built-up. - **4.2.172.9.2 monoblock:** the descriptor which specifies the method of construction to be of type monoblock. - **4.2.172.9.3 user_defined_type_of_construction:** the descriptor, set by the user, which specifies the type of construction if different from the other options. # 4.2.173 Screw_propeller_mass_weight_inertia A Screw_propeller_mass_weight_inertia is a type of Mass_weight_inertia (see 4.2.102) and specifies the mass related data for a screw propeller. The data associated with a Screw_propeller_mass_weight_inertia are the following: - defined for: - entrained_water_method_of_calculation; - inertia in water; - weight_including_water. ## **4.2.173.1** defined_for The defined_for attribute specifies a set of one to many screw propellers for which mass-related data are defined. ## 4.2.173.2 entrained_water_method_of_calculation The entrained_water_method_of_calculation attribute specifies the calculation method of entrained water in the text format. ## 4.2.173.3 inertia_in_water The inertia_in_water attribute specifies the propeller mass moment of inertia when in water (including entrained water). # 4.2.173.4 weight_including_water The weight_including_water attribute specifies the weight of the propeller inclusive of entrained water. # 4.2.174 Screw_propeller_operational_characteristic A Screw_propeller_operational_characteristic is a type of Machinery_operational_characteristic (see 4.2.92) and specifies the concept for collecting all the operational characteristics which are attributable to all types of screw propellers. The data associated with a Screw_propeller_operational_characteristic are the following: - defined for; - immersion_in_ballast_condition; - immersion_in_loaded_condition; - operating_points. #### **4.2.174.1** defined for The defined_for attribute specifies a set of one to many screw propellers for which operational characteristics are defined. #### 4.2.174.2 immersion in ballast condition The immersion_in_ballast_condition attribute specifies the depth of propeller immersion when the ship is under ballast condition. #### 4.2.174.3 immersion in loaded condition The immersion_in_loaded_condition attribute specifies the depth of propeller immersion when the ship is under loaded condition. #
4.2.174.4 operating_points The operating_points attribute specifies a set of operating points through reference to Power_speed_pitch_point (see 4.2.143) application object. # 4.2.175 Screw_propeller_overall_dimension The Screw_propeller_overall_dimension is a type of Overall_dimension (see 4.2.132) and specifies the data representation concept for collecting all the overall dimensions which are attributable to all types of screw propellers. The data associated with a Screw_propeller_overall_dimension are the following: - blade_area_ratio_expanded; - blade_thickness_at_centreline; - defined for; - diameter; - hub_to_diameter_ratio; - mean_pitch_diameter_ratio; - nominal_design_pitch_diameter_ratio; - rake_angle; - shaft_height; - skew_angle; - tip_clearance_to_hull. # 4.2.175.1 blade_area_ratio_expanded The blade_area_ratio_expanded attribute specifies the ratio of the total area of the blades to the propeller projected area. #### 4.2.175.2 blade thickness at centreline The blade_thickness_at_centreline attribute specifies the thickness of the propeller blade at its centreline. #### **4.2.175.3** defined for The defined_for attribute specifies a set of one to many screw propellers for which overall dimensions are defined. #### 4.2.175.4 diameter The diameter specifies the propeller diameter. #### 4.2.175.5 hub to diameter ratio The hub to diameter ratio attribute specifies the ratio of the hub diameter to propeller diameter. # 4.2.175.6 mean_pitch_diameter_ratio The mean_pitch_diameter_ratio specifies the ratio of propeller mean pitch to propeller diameter. ### 4.2.175.7 nominal_design_pitch_diameter_ratio The nominal_design_pitch_diameter_ratio attribute specifies the ratio of the nominal mean design pitch to propeller diameter. #### **4.2.175.8** rake_angle The rake_angle attribute specifies the propeller rake angle. # 4.2.175.9 **shaft_height** The shaft_height attribute specifies the distance between propeller shaft centre and ship baseline. # 4.2.175.10 skew_angle The skew angle attribute specifies the propeller skew angle. # 4.2.175.11 tip_clearance_to_hull The tip_clearance_to_hull attribute specifies the clearance length (minimum distance) between propeller tip and hull. #### 4.2.176 Shaft A Shaft is a type of Rotating_component (see 4.2.166) which specifies the high level concept for all the shafts (see 3.8.139) which need to be defined. The data associated with a Shaft are the following: - shaft type. The shaft type attribute specifies the type of shaft. # 4.2.177 Ship A Ship is a type of Item (see 4.2.74) that specifies the ship concerned. All data defining the product are somehow to be related to a ship, which might exist in any life cycle stage. The data associated with a Ship are the following: - placements; - units. # **4.2.177.1** placements The placements attribute specifies the redefine of the inherited attribute placement. #### 4.2.177.2 units The units attribute specifies a reference to a set of pre-defined unit for all measures that may appear in the ship model. There may be more than one units for a Ship. # **4.2.178** Ship_space A Ship_space specifies the ship spaces/locations, within which the mechanical product may be or is positioned. The data associated with a Ship_space are the following: - ship_space_name. The ship_space_name attribute specifies the name of the ship space. The value of the ship_space_name shall be one of the following: - engine_room; - deck; - machinery_room; - user_defined_ship_space. - **4.2.178.1 engine_room:** The descriptor which specifies that the mechanical product is placed in the engine room. - **4.2.178.2 deck:** The descriptor which specifies that the mechanical product is placed on the deck. - **4.2.178.3 machinery room:** The descriptor which specifies that the mechanical product is placed in the machinery room. - **4.2.178.4 user_defined_ship_space:** The descriptor, set by the user, which specifies the ship compartment within which the mechanical product is located if different from the other options. # 4.2.179 Solid_material_property A Solid_material_property is a type of Material_property (see 4.2.103) and specifies the high level concept for all the properties which are attributable to a solid material. The data associated with a Solid_material_property are the following: - corrosion_fatigue_strength; - defined_for; - density; - element_contents; - elongation; - fatigue_strength; - hardness_number; - poisson_ratio; - shear_modulus; - stress_of_fracture; - thermal_expansion_ratio; - ultimate_tensile_stress; - yield_point; - youngs_modulus. # 4.2.179.1 corrosion fatigue strength The corrosion_fatigue_strength attribute specifies the material fatigue strength under corrosion conditions. ### **4.2.179.2 defined_for** The defined_for attribute specifies a solid material for which the properties are defined. # 4.2.179.3 density The density attribute specifies the density of the material. #### 4.2.179.4 element_contents The element_contents attribute specifies details of compositional elements of a solid material by referencing an Element_content (see 4.2.47) application object. #### **4.2.179.5** elongation The elongation attribute specifies the stretching characteristic of a solid material under tensile stress. # 4.2.179.6 fatigue_strength The fatigue_strength attribute specifies the fatigue strength of a material which is the highest stress that a material can be expected to withstand for an infinite number of cycles without failure. #### 4.2.179.7 hardness number The hardness_number attribute specifies a number indicating the relative hardness of a substance as determined by various hardness tests. #### **4.2.179.8** poisson ratio The poisson_ratio attribute specifies the poisson ratio of the material which is the negative ratio between longitudial and transversal strains. #### **4.2.179.9 shear_modulus** The shear_modulus attribute specifies the material shear modulus which indicates the strength factor for the material under shear stress. The shear_modulus is a DERIVED attribute from youngs_modulus and poisson_ratio. #### 4.2.179.10 stress_of_fracture The stress_of_fracture attribute specifies the stress level beyond which the material will undergo fraction and loose coherence. #### 4.2.179.11 thermal_expansion_ratio The thermal_expansion_ratio attribute specifies the linear expansion caused by a unit change of material temperature level. #### 4.2.179.12 ultimate_tensile_stress The ultimate_tensile_stress attribute specifies the material's ultimate tensile stress which is the highest tensile stress that a material can withstand before it fractures or fails. # 4.2.179.13 **yield_point** The yield_point attribute specifies the yield point of the material. The yield point defines the limit to elastic deformation beyond which the material undergoes plastic deformation. # **4.2.179.14** youngs_modulus The youngs_modulus attribute specifies the material youngs modulus of elasticity which is the ratio between stress and strain in the elastic region (Hook's law). ## **4.2.180 Solid_model** A Solid_model is a complete representation of the nominal shape of a product such that all points in the interior are connected. Any point can be classified as being inside, outside or on the boundary of a solid. It is used as defined in ISO 10303-41. # **4.2.181 Spare_part** A Spare_part is a type of Task_resource (see 4.2.197) which specifies the concept for collecting information on spare parts needed for a task. The data associated with a Spare_part are the following: ``` - spare_parts_list. ``` The spare_parts_list attribute provides a list of all the required spare parts. # 4.2.182 Speed A Speed is a type of Measure_with_unit (see 4.2.104) where the physical quantity is linear speed. The data associated with a Speed are the following: ``` - speed unit. ``` The speed_unit attribute specifies all the units in which linear speed is measured. #### 4.2.183 Steam generation system A Steam_generation_system is a type of Mechanical_system (see 4.2.119) which specifies the high level concept for all the ship's steam generation systems which need to be defined. The data associated with a Steam_generation_system are the following: ``` type_of. ``` The type_of attribute specifies the basic types of steam generation systems. #### 4.2.184 Stress A Stress is a type of Measure_with_unit (see 4.2.104) where the physical quantity is the stress within a material. The data associated with a Stress are the following: ``` - stress unit. ``` The stress_unit attribute specifies all the units in which the physical quantity of stress is measured. #### 4.2.185 Structural connection A Structural_connection is a type of Mechanical_product_connection (see 4.2.113) which specifies the connection (see 3.8.34) between a mechanical product and a ship structure. The data associated with a Structural connection are the following: ``` - connection_type. ``` A connection_type attribute specifies the type of the structural connection. The value of a connection_type shall be one of the following: - component_mounting; - equipment_mounting; - equipment_support; - insulation_attachment; - pipe_support; - user defined structural connection. - **4.2.185.1 component_mounting:** the descriptor which specifies that the structural connection is of type component mounting. - **4.2.185.2 equipment_mounting:** the descriptor which specifies that the structural connection is of type equipment mounting. - **4.2.185.3 equipment_support:** the descriptor which specifies that the structural connection is of type equipment support. - **4.2.185.4 insulation_attachment:** the descriptor which specifies that the structural connection is of type insulation attachment. - **4.2.185.5 pipe_support:** the descriptor which specifies that the structural connection is of type pipe support. - **4.2.185.6** user_defined_structural_connection: the descriptor, set by the user, which specifies the type of structural connection if
different from the other options. ## 4.2.186 Structural connector A Structural_connector is a type of Connector_component (see 4.2.16) and specifies the high level concept for data representation of all types of structural connectors (see 3.8.35) which need to be defined. The data associated with a Structural_connector are the following: structural_connector_type. The structural_connector_type attribute specifies the type of the structural connector in text format. ## 4.2.187 Surface_tension A Surface_tension is a type of Measure_with_unit (see 4.2.104) where the physical quantity is surface tension of a liquid. The data associated with a Surface_tension are the following: - surface tension unit. The surface_tension_unit attribute specifies all the units in which the physical quantity of force per length is measured. # 4.2.188 Survey_inspection_task A Survey_inspection_task is a type of Task (see 4.2.189) and specifies the concept for collecting data which are attributable to a survey/inspection task. The data associated with a Survey_inspection_task are the following: ``` - type_of_task. ``` The type_of_task attribute specifies the type of survey/inspection task in a text format. # 4.2.189 Task A Task specifies the high level concept for data representation for all various tasks (see 3.8.155) and activities (3.8.2) which need to be defined. The data associated with a Task are the following: - description; - job_number; - reason_for_task; - related_mechanical_products; - related_tasks; - standard_definition; - task_status; - task_type. # **4.2.189.1** description The description attribute specifies a textual description of the task. # 4.2.189.2 **job_number** The job_number specifies a unique label for identification of the task. #### **4.2.189.3** reason for task The reason_for_task attribute specifies the overall objective of the task. # 4.2.189.4 related_mechanical_products The related_machanical_products attribute specifies the mechanical products which are related to the task. # 4.2.189.5 related_tasks The related_tasks attribute specifies the tasks which are related to this task. #### 4.2.189.6 standard definition The standard_definition attribute specifies a textual standard definition for the task. The standard definition shall be according to this part of ISO 10303. #### **4.2.189.7** task status The task_status attribute specifies the status of a task within its life cycle. The value of task status shall be one of the following: - completed; - concept; - executed; - planned; - under_execution; - under_planning. - **4.2.189.7.1 completed:** the descriptor which specifies that the task has been fully completed without any need for further action. - **4.2.189.7.2 concept:** the descriptor which specifies that the task is at the concept stage. - **4.2.189.7.3 executed:** the descriptor which specifies that the task has been executed. - **4.2.189.7.4 planned:** the descriptor which specifies that the task planning is complete but not executed. - **4.2.189.7.5 under_execution:** the descriptor which specifies that the task is at the execution stage. - **4.2.189.7.6** under planning: the descriptor which specifies that the task is at the planning stage. # **4.2.189.8** task_type The task_type attribute specifies the type of task at high level. The value of the task_type shall be one of the following: - analysis_task; - design_task; - inspection task; - maintenance_task; - normal_operation_task; - survey_task; - user_defined_task. - **4.2.189.8.1** analysis_task: the descriptor which specifies that the task is an analysis task. - **4.2.189.8.2 design_task:** the descriptor which specifies that the task is a design task. - **4.2.189.8.3** inspection_task: the descriptor which specifies that the task is an inspection task. - **4.2.189.8.4** maintenance task: the descriptor which specifies that the task is a maintenance task. - **4.2.189.8.5 normal_operation_task:** the descriptor which specifies that the task is a normal operation task. - **4.2.189.8.6 survey_task:** the descriptor which specifies that the task is a survey task. - **4.2.189.8.7 user_defined_task:** the descriptor, set by the user, which specifies the type of task if different from the other options. ## 4.2.189.9 related_mechanical_products The related_mechanical_products attribute specifies the mechanical products which this task relates to. Each task must have at least one related mechanical product. #### 4.2.190 Task_approval A Task_approval is a type of Approval_event (see 4.2.6) and specifies task-related data on approval and authorisation. # 4.2.191 Task configuration A Task_configuration is a type of Task_definition (see 4.2.192) and specifies all the data relating to the configuration (see 3.8.32) of a task (see 3.8.155) The data associated with a Task_configuration are the following: - task approval; - task_authorisation; - task location. # 4.2.191.1 task_approval The task_approval specifies information on approval of a task in the form of event and approval data (see 3.8.60). #### 4.2.191.2 task_authorisation The task_authorisation specifies information on authorisation of a task in the form of event and approval data (see 3.8.60). #### **4.2.191.3** task location The task_location attribute specifies the place where the task is performed. The value of task_location shall be one of the following: - in_shipyard; - in_supplier_premises; - on_board_ship; - user defined location. - **4.2.191.3.1** in_shipyard: the descriptor which specifies that the task is to be performed at a shipyard. - **4.2.191.3.2** in_supplier_premises: the descriptor which specifies that the task is to be performed at the supplier's premises. - **4.2.191.3.3 on_board_ship:** the descriptor which specifies that the task is to be performed on board ship. - **4.2.191.3.4 user_defined_location:** the descriptor, set by the user, which specifies the location where the task will be executed if different from the other options. #### 4.2.192 Task definition A Task_definition is the supertype for all kinds of task-related definitions and specifies the high level concept for relating definitions to a task. The data associated with a Task_definition are the following: - defined for; - version_id. # **4.2.192.1** defined_for The defined_for attribute specifies the tasks for which definitions are provided. There may be more than one defined_for for a Task_definition. #### 4.2.192.2 version id The version_id attribute specifies a simple versioning mechanism for the task definitions. #### 4.2.193 Task_other_definition A Task_other_definition is a type of Task_definition (see 4.2.192) which specifies all task-related definitions other than those already specified in Task_configuration (see 4.2.191), Task_schedule (see 4.2.199), Task_procedure (see 4.2.195), Task_resource (see 4.2.197)., Task_result (see 4.2.198) and Task_schedule (see 4.2.199), The data associated with a Task_other_definition are the following: task_other_definitions. The task_other_definitions attribute specifies all the related information in a text format. # 4.2.194 Task_other_resource A Task_other_resource is a type of Task_resource (see 4.2.197) which specifies all resources other than those already specified in Human_resource (see 4.2.72), Spare_part (see 4.2.181) and Tool (see 4.2.207). The data associated with a Task_other_resource are the following: ``` task_other_resources. ``` The task_other_resources attribute specifies all the related information in a text format. ### 4.2.195 Task_procedure A Task_procedure is a type of Task_definition (see 4.2.192) and specifies the procedures by which a task (see 3.8.155) needs to be carried out. The data associated with a Task procedure are the following: - task_procedures. The task_procedures attribute specifies and references a set of one to many documents which contain a detailed procedure for carrying out the task. # 4.2.196 Task_relationship A Task_relationship specifies the concept for relating two tasks together. The data associated with a Task_relationship are the following: - major_aspect_of_relationship; - related_task; - this_task. # 4.2.196.1 major_aspect_of_relationship The major_aspect_of_relationship specifies the important aspect of a task's relationship. The value of major_aspect_of_relationship shall be one of the following: - concurrent; - predecessor; - successor; - user defined relationship. - **4.2.196.1.1 concurrent:** the descriptor which specifies that this_task and the related_task should be carried out concurrently. - **4.2.196.1.2 predecessor:** the descriptor which specifies that this_task should be completed after the related_task is initiated. - **4.2.196.1.3 successor:** the descriptor which specifies that this_task should be carried out before the related_task. - **4.2.196.1.4 user_defined_relationship:** the descriptor, set by the user, which specifies the relationship between two tasks if different from the other options. #### **4.2.196.2** related_task The related task attribute specifies the task which is related to this task. ## 4.2.196.3 this_task The this_task attribute specifies a task for which a related_task is specified. #### 4.2.197 Task_resource A Task_resource is a type of Task_definition (see 4.2.192) and specifies the high level concept for defining all the resources which are needed to perform a task. #### **4.2.198 Task_result** A Task_result is a type of Task_definition (see 4.2.192) and specifies the results of a task. The data associated with a Task_result are the following: - results_as_report; - results_in_summary. # 4.2.198.1 results_as_report The results_as_report attribute specifies and references a document which contains full results of a task. # 4.2.198.2 results_in_summary The results_in_summary attribute specifies the summary results of a task in text format. #### **4.2.199 Task_schedule** A Task_schedule is a type of Task_definition (see 4.2.192) and Time_schedule (see 4.2.205) which specifies the
schedule for a task. # 4.2.200 Temperature A Temperature is a type of Measure_with_unit (see 4.2.104) where the physical quantity is temperature as defined in ISO 31 (clause 2). The data associated with a Temperature are the following: ``` temperature_unit. ``` The temperature unit attribute specifies all the units in which the temperature is measured. #### 4.2.201 Text A Text application object is used to assign a character text in order to describe something. It is used as defined in ISO 10303-41. # 4.2.202 Thermal_conductivity A Thermal_conductivity is a type of Measure_with_unit (see 4.2.104) where the physical quantity is thermal conductivity. The data associated with a Thermal_conductivity are the following: ``` - thermal conductivity unit. ``` The thermal_conductivity_unit attribute specifies all the units in which the physical quantity of thermal conductivity is measured. #### 4.2.203 Time A Time is a type of Measure_with_unit (see 4.2.104) where the physical quantity is time as defined in ISO 31 (clause 2). The data associated with a Time are the following: ``` - time unit. ``` The time_unit attribute specifies all the units in which the duration of periods is measured # 4.2.204 Time_period A Time_period specifies a time period in terms of its start and end dates. The data associated with a Time_period are the following: - duration: - end_date; - start_date. #### 4.2.204.1 duration The duration attribute specifies the duration of a time period. It is a DERIVED attribute. #### 4.2.204.2 end_date The end_date attribute specifies the end date for the time period. #### 4.2.204.3 start_date The start_date attribute specifies the start date for the time period. #### 4.2.205 Time_schedule A Time_schedule is a type of Time_period (see 4.2.204) and specifies a schedule on a calendar basis. #### **4.2.206** Tolerance A Tolerance is a type of Geometric_definition (see 4.2.67) which provide the high level concept for all the definitions attributable to geometric tolerances of a mechanical product. The data associated with a Tolerance are the following: - defined for; - manufacturing_tolerances. ### 4.2.206.1 defined for The defined_for attribute specifies a set of one to many mechanical products for which tolerance data are defined. # 4.2.206.2 manufacturing_tolerances The manufacturing_tolerances attribute specifies all the descriptive aspects of product manufacturing tolerances. #### 4.2.207 Tool A Tool is a type of Task_resource (see 4.2.197) which specifies the concept for collecting information on tools needed to carry out a task. The data associated with a Tool are the following: tools_list. The tools_list attribute specifies a list of all the required tools. # **4.2.208** Torque A Torque is a type of Measure_with_unit (see 4.2.104) where the physical quantity is Torque. The data associated with a Torque are the following: ``` torque_unit. ``` The torque_unit attribute specifies all the units for torque. ## 4.2.209 Transformer A Transformer is a type of Electrical_equipment (see 4.2.45) and specifies the data representation concept for all the transformers which need to be defined. The data associated with a Transformer are the following: ``` - transformer_type. ``` The transformer_type attribute specifies the type of transformer in text format. #### **4.2.210** Valve A Valve is a type of Piping_equipment (see 4.2.139) and specifies the data representation concept for all the valves which need to be defined. The data associated with a Valve are the following: ``` valve_type. ``` The valve_type attribute specifies the type of valve. The value of valve_type shall be one of the following: - ball_valve; - butterfly_valve; - check_valve; - diaphragm_valve; - gate_valve; - globe_valve; - plug_valve; - relief_valve; - solenoid_valve; - user_defined_valve_type. - **4.2.210.1** ball_valve: the descriptor which specifies that the valve is of type ball valve. - **4.2.210.2** butterfly_valve: the descriptor which specifies that the valve is of type butterfly valve. - **4.2.210.3 check_valve:** the descriptor which specifies that the valve is of type check valve. - **4.2.210.4 diaphragm_valve:** the descriptor which specifies that the valve is of type diaphragm valve. - **4.2.210.5** gate_valve: the descriptor which specifies that the valve is of type gate valve. - **4.2.210.6 globe_valve:** the descriptor which specifies that the valve is of type globe valve. - **4.2.210.7** plug_valve: the descriptor which specifies that the valve is of type plug valve. - **4.2.210.8** relief_valve: the descriptor which specifies that the valve is of type pressure relief valve. - **4.2.210.9 solenoid_valve:** the descriptor which specifies that the valve is of type solenoid valve. - **4.2.210.10** user_defined_valve_type: the descriptor, set by the user, which specifies the type of valve if different from the other options. #### 4.2.211 Vector A Vector defines a vector in terms of the direction and the magnitude of the vector. It is used as defined in ISO 10303-42. # **4.2.212** Viscosity A Viscosity is a type of Measure_with_unit (see 4.2.104) where the physical quantity is kinematic viscosity of the fluid. The data associated with a Viscosity are the following: - viscosity_unit. The viscosity_unit attribute specifies all the units in which the physical quantity of area per time is measured. ## 4.3 Application Assertions This subclause specifies the application assertions for the ship Mechanical Systems application protocol. Application assertions specify the relationships between application objects, the cardinality of relationships, and the rules required for the integrity and validity of the application objects and UoFs. The application assertions and their definitions are given below. #### 4.3.1 Ambient_condition to Gas Each Ambient_condition refers to exactly one Gas. Each Gas defines the ambient_fluid of an Ambient_condition. ## 4.3.2 Ambient_condition to Liquid Each Ambient_condition refers to exactly one Liquid. Each Liquid defines the ambient_fluid of an Ambient_condition. #### 4.3.3 Ambient_condition to Mechanical_product Each Ambient_condition refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Ambient_condition. #### 4.3.4 Crane_ambient_condition to Crane Each Crane_ambient_condition refers to a set of one or many Cranes. A set of Cranes defines the defined_for for Crane_ambient_condition. # 4.3.5 Crane_composition to Crane Each Crane_composition refers to a set of one or many Cranes. A set of Cranes defines the defined_for for Crane_composition. # 4.3.6 Crane_design_characteristic to Crane Each Crane_design_characteristic refers to a set of one or many Cranes. A set of Cranes defines the defined_for for Crane_design_characteristic. # 4.3.7 Crane_general_characteristic to Crane Each Crane_general_characteristic refers to a set of one or many Cranes. A set of Cranes defines the defined_for for Crane_general_characteristic. # 4.3.8 Crane_load_characteristic to Crane Each Crane_load_characteristic refers to a set of one or many Cranes. A set of Cranes defines the defined for for Crane load characteristic. #### 4.3.9 Crane overall dimension to Crane Each Crane_overall_dimension refers to a set of one or many Cranes. A set of Cranes defines the defined for for Crane overall dimension. #### 4.3.10 Definition to Definable_object Each Definition refers to a set of one or many Definable_objects. A set of Definable_objects defines the defined_for for Definition. # 4.3.11 Design_characteristic to Mechanical_product Each Design_characteristic refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Design_characteristic. # 4.3.12 Diesel engine design characteristic to Diesel engine Each Diesel_engine_general_characteristic refers to a set of one or many Diesel_engines. A set of Diesel engines defines the defined for for Diesel engine design characteristic. #### 4.3.13 Diesel_engine_general_characteristic to Diesel_engine Each Diesel_engine_general_characteristic refers to a set of one or many Diesel_engines. A set of Diesel_engines defines the defined_for for Diesel_engine_general_characteristic. # 4.3.14 Diesel engine operational characteristic to Diesel engine Each Diesel_engine_operational_characteristic refers to a set of one or many Diesel_engines. A set of Diesel engines defines the defined for for Diesel_engine_operational_characteristic . #### **4.3.15** Failure to Fault Each Failure refers to a set of one or many Faults. A set of Faults defined for for Failure. # 4.3.16 Gas_material_property to Gas Each Gas_material_property refers to a set of one or many Gases. A set of Gases defines the defined_for for Gas_material_property. # 4.3.17 Lifting_equipment_design_characteristic to Lifting_equipment Each Lifting_equipment_design_characteristic refers to a set of one or many Lifting_equipment. A set of Lifting_equipment defines the defined for for Lifting_equipment design characteristic. # 4.3.18 Liquid_material_property to Liquid Each Liquid_material_property refers to a set of one or many Liquids. A set of Liquids defines the defined_for for Liquid_material_property. #### 4.3.19 Machinery_ambient_condition to Machinery Each Machinery_ambient_condition refers to a set of one or many Machinery. A set of Machinery defines the defined_for for Machinery_ambient_condition. ## 4.3.20 Machinery_general_characteristic to Machinery Each Machinery_general_characteristic refers to a set of one or many Machinery. A set of Machinery defines the defined_for for Machinery_general_characteristic. # 4.3.21 Machinery_operational_characteristic to Machinery Each Machinery_operational_characteristic refers to a set of one or many Machinery. A set of Machinery defines the defined_for for Machinery_operational_characteristic. # 4.3.22 Maintenance_configuration_data to Maintenance_task Each Maintenance_configuration_data refers to a set of
one or many Maintenance_tasks. A set of Maintenance tasks defines the defined for for Maintenance configuration data. # 4.3.23 Maintenance_procedure to Maintenance_task Each Maintenance_procedure refers to a set of one or many Maintenance_tasks. A set of Maintenance_tasks defines the defined_for for Maintenance_procedure. # 4.3.24 Maintenance result to Maintenance task Each Maintenance_result refers to a set of one or many Maintenance_tasks. A set of Maintenance tasks defines the defined for for Maintenance result. #### 4.3.25 Maintenance schedule to Maintenance task Each Maintenance_schedule refers to a set of one or many Maintenance_tasks. A set of Maintenance_tasks defines the defined_for for Maintenance_schedule. # 4.3.26 Maintenance_spare_part to Maintenance_task Each Maintenance_spare_part refers to a set of one or many Maintenance_tasks. A set of Maintenance_tasks defines the defined_for for Maintenance_spare_part. #### 4.3.27 Maintenance tool to Maintenance task Each Maintenance_tool refers to a set of one or many Maintenance_tasks. A set of Maintenance_tasks defines the defined_for for Maintenance_tool. # 4.3.28 Mass_weight_inertia to Mechanical_product Each Mass_weight_inertia refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Mass_weight_inertia. #### 4.3.29 Mechanical_machinery_composition to Mechanical_machinery Each Mechanical_machinery_composition refers to a set of one or many Mechanical_machinery. A set of Mechanical_machinery defines the defined_for for Mechanical_machinery_composition. # 4.3.30 Mechanical_machinery_identification to Mechanical_machinery Each Mechanical_machinery_identification refers to a set of one or many Mechanical_machinery. A set of Mechanical_machinery defines the defined_for for Mechanical_machinery_identification. # 4.3.31 Mechanical_product_drawing to Mechanical_product Each Mechanical_product_drawing refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Mechanical_product_drawing. # 4.3.32 Mechanical_product_general_characteristic to Mechanical_product Each Mechanical_product_general_characteristic refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Mechanical_product_general_characteristic. # 4.3.33 MP_equipment_identification to MP_equipment Each MP_equipment_identification refers to a set of one or many MP_equipment. A set of MP_equipment defines the defined_for for MP_equipment_identification . # 4.3.34 Overall_dimension to Mechanical_product Each Overall_dimension refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Overall_dimension. # 4.3.35 Product_assembly to Mechanical_product Each Product_assembly refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Product_assembly. # 4.3.36 Product_composition to Mechanical_product Each Product_composition refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Product_composition . # 4.3.37 Product_connectivity to Mechanical_product Each Product_connectivity refers to a set of one or many Mechanical_products A set of Mechanical_products defines the defined_for for Product_connectivity. # 4.3.38 Product_context to Mechanical_product Each Product_context refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Product_context. # 4.3.39 Product_material to Mechanical_product Each Product_material refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Product_material. # 4.3.40 Product_participation to Mechanical_product Each Product_participation refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Product_participation. # 4.3.41 Product_placement to Mechanical_product Each Product_placement refers to a set of one or many Mechanical_products. A set of Mechanical products defines the defined for for Product placement . # 4.3.42 Product_status to Mechanical_product Each Product_status refers to a set of one or many Mechanical_products. A set of Mechanical products defines the defined for for Product status. # 4.3.43 Tolerance to Mechanical_product Each Tolerance refers to a set of one or many Mechanical_products. A set of Mechanical_products defines the defined_for for Tolerance. The remainder of the application assertions will be defined at a later date. # 5 Application interpreted model # 5.1 Mapping Table This clause contains the mapping table that shows how each UoF and application object of this part of ISO 10303 (see clause 4) maps to one or more AIM constructs (see Annex A). To be completed at a later date. # 5.2 AIM EXPRESS short listing This clause specifies the EXPRESS schema that uses elements from the integrated resources and the AICs and contains types, entity specialisations, rules and functions that are specific to this part of ISO 10303. This clause also specifies modification to the textual material for constructs that are imported from the integrated resources and the AICs. The definitions and EXPRESS provided in the integrated resources for constructs used in the AIM may include select list items and subtypes which are not imported into the AIM. Requirements stated in the integrated resources which refer to such items and subtypes apply exclusively to those items which are imported into the AIM. #### **6.** Conformance requirements Conformance to this part of ISO 10303 includes satisfying the requirements stated in this part, the requirements of the implementation methods supported, and the relevant requirements of the normative references. An implementation shall support at least one of the following implementation methods: - ISO 10303-21 - ISO 10303-22 Requirements with respect to implementation methods are specified in annex C. The Protocol Information Conformance Statement (PICS) proforma lists the options or the combinations of options that may be included in the implementation. The PICS proforma is provided in annex D. NOTE 1 - ISO 10303-326: - 1) defines the abstract test suite to be used in the assessment of conformance. ISO 10303-32: - 1) describes the conformance assessment process. Conformance to a particular class requires that all AIM elements defined as part of that class be supported. Table (*to be specified later*) defines the classes to which each AIM element belongs. The conformance classes are characterised as follows: This part of ISO 10303 specifies a number of conformance classes that may be supported by an implementation. The conformance classes are: - Class 1, the shape representation of the mechanical systems and their principal equipment together with their product structure and connectivity information. This class excludes all the functional and design characteristics of the systems/equipment. - Class 2, the general characteristics and specifications of the mechanical systems and their principal equipments. - Class 3, functional design of mechanical systems primarily in the form of parametric definitions. This class contains only functional information, but no detailed geometric and other physical and spatial details. - Class 4, operational characteristics of mechanical equipment. This class contains only operational information (as normally measured on-board ship), but no geometric, physical, spatial and design characteristics details. - Class 5, task and activity information as carried out in relation to mechanical equipments. This class excludes any functional, physical, spatial or design information and will include information on activities carried out in relation to mechanical products. Table 1 defines the division of conformance classes and the related units of functionality within a conformance class **Table 1 - Conformance Classes** | Unit of functionality | Conformance Class | | | | | |--|-------------------|---|---|---|---| | | 1 | 2 | 3 | 4 | 5 | | configuration_definitions | X | X | X | X | X | | cranes | X | X | X | X | X | | diesel_engines | X | X | X | X | X | | external_references | X | X | X | X | X | | gas_material_properties | | | X | X | | | lifting_equipments | X | X | X | X | X | | liquid_material_properties | | | X | X | | | local_co_ordinate_systems | X | | | | | | machineries | X | X | X | X | X | | maintenance_tasks | | | | | X | | measure_with_units | X | X | X | X | X | | mechanical_machineries | X | X | X | X | X | | mechanical_product_anomalies | | | | X | X | | mechanical_product_components | X | | | X | X | | mechanical_product_connections | X | X | | | | | mechanical_product_definitions | X | X | X | X | X | | mechanical_product_equipments | X | X | X | X | X | | mechanical_product_general_characteristics | X | X | X | X | X | | mechanical_product_representations | X | | | | | | mechanical_product_structures | X | | | X | X | | mechanical_product_systems | X | X | X | X | X | | mechanical_products | X | X | X | X | X | | other_equipments | X | X | X | X | X | | other_tasks | | | | | X | | part41_resources | X | X | X | X | X | | part42_resources | X | X | X | X | X | | RAM_characteristics | | | | X | X | | reciprocating_machineries | X | X | X | X | X | | screw_propellers | X | X | X | X | X | | ships | X | X | X | X | X | | solid-material_properties | | X | X | X | X | | task_definitions | | | | | X | | tasks | | | | | X | | time_and_events | X | X | X | X | X | . # Annex A (normative) ## AIM EXPRESS expanded listing The following EXPRESS is the expanded form of the short form schema given in 5.2. In the event of any discrepancy between the short form and this expanded listing, the expanded listing shall be used. # Annex B (normative) #### **AIM short names** Table B.1 provides the short names of entities
specified in the AIM of this part of ISO 10303. Requirements on the use of the short names are found in the implementation methods included in ISO 10303. Table B.1 - Short names of entities | Entity names | Short names | |--------------|-------------| | | | | | | | | | # Annex C (normative) #### Implementation method - specific requirements The implementation method defines what types of exchange behaviour are required with respect to this part of ISO 10303. Conformance to this part of ISO 10303 shall be realised in an exchange structure. The file format shall be encoded according to the syntax and EXPRESS language mapping defined in ISO 10303-21 and the AIM defined in annex A of this part of ISO 10303. The header of the exchange structure shall identify the use of this part of ISO 10303 by the schema name 'ship_mechanical_systems'. # Annex D (normative) #### Protocol Implementation Conformance Statement (PICS) proforma The PICS proforma is supplied for completion by the person or organisation (the client) requesting conformance testing. Its purpose is to ascertain the scope of claimed conformance to a particular application protocol by an implementation under test (IUT) using a defined implementation method. Through the completion of this form, the PICS Proforma becomes a PICS. The information contained in the PICS is used to configure an appropriate executable test suite for use by the client. Ten conformance classes are identified in this part of ISO 10303. A conforming implementation shall support at least one conformance class. Each class specifies a subset of ISO 10303-226 AIM constructs. These classes are detailed in clause 6 of ISO 10303-226. #### Questions: | 1. | Please provide an identifier for the product or system for which conformance is claimed | |----|--| | | Product name and current version number: | | 2. | Please indicate the implementation method chosen: | | | - ISO 10303-21 Exchange Structure preprocessor Preprocessor name and current version number: | | | - ISO 10303-21 Exchange Structure postprocessor Postprocessor name and current version number: | | 3. | Please indicate the classes for which conformance is claimed: | | | - Class 1: | | | - Class 2: | | | - Class 3: | | | | # Annex E (normative) #### Information object registration #### **E.1** Document identification In order to provide for unambiguous identification of an information object in an open system, the object identifier: { iso standard 10303 part(226) version(-1) } is assigned to this part of ISO 10303. The meaning of this value is defined in ISO/IEC 8824-1, and is described in ISO 10303-1. #### **E.2** Schema identification In order to provide for unambiguous identification of the schema specifications given in this application protocol in an open information system, object identifiers are assigned as follows: # Annex F (informative) #### Application activity model The application activity model (AAM) is provided to aid the understanding of the scope and information requirements defined in this application protocol. The model is presented as a set of definitions of the activities and the data, and a set of activity figures. The viewpoint of the AAM is the users of ship mechanical system's information, including shipbuilder, ship designer, ship operator, equipment supplier and so on. This AAM identifies the ship life cycle activities across all shipbuilding APs with extensions to ship mechanical systems. As such, the AAM covers activities which go beyond the scope of this part of ISO 10303. # F.1 Application activity model definitions and abbreviations The following terms are used in the application activity model. Terms marked with an asterisk are outside the scope of this application protocol. The definitions given in this annex do not supersede the definitions given in the main body of the text. - **F.1.1 acceptable cost level:** the acceptable cost level for maintenance task. - **F.1.2 adjust maintenance program** (A4213): the activity which leads to changes in the maintenance program. - **F.1.3 agree design (A122523):** the activity which leads to agreement by corresponding organisations on a design. - **F.1.4 agree design (A122543):** the activity which leads to agreement by corresponding organizations on a design. - **F.1.5 agree final design (A25123):** the activity which leads to agreement by corresponding organisations on a final design. - **F.1.6 agree final design (A25143):** the activity which leads to agreement by corresponding organisations on a final design. - **F.1.7 agree on auxiliary equipment detail specification (A122531):** the activity which leads to agreement by corresponding organisations on a detailed specification of the auxiliary equipment. - **F.1.8 agree on detail specification of deck machinery (A122552):** the activity which leads to agreement by corresponding organisations on a detailed specification of the deck machinery. - **F.1.9 agree on main engine detail specification (A122512):** the activity which leads to agreement by corresponding organisations on a detailed specification of the main engine. - **F.1.10 alarm:** the signal (e.g. sound or light) automatically generated in case of danger or failure. - **F.1.11 allocate material (A421414):** the activity which leads to the allocation of material (equipment, raw material etc.) to a maintenance task. - **F.1.12 allocate material (A423114):** the activity which leads to the allocation of material (equipment, raw material, etc.) to a maintenance task. - **F.1.13 allocate personnel (A421415):** the activity which leads to the allocation of personnel to a maintenance task. - **F.1.14 allocate personnel (A423116):** the activity which leads to the allocation of personnel to a maintenance task. - **F.1.15 allocate/service tools and equipment (A421416):** the activity which leads to the allocation of tools and equipment to a maintenance task. - **F.1.16 allocate/service tools and equipment (A423115):** the activity which leads to the allocation of tools and equipment to a maintenance task. - **F.1.17 allocated personnel:** the shipyard personnel, assigned and scheduled to perform a specific maintenance task. - **F.1.18 allowable limits:** the acceptable limits for typical parameters of a specific system, component or part that should be met during maintenance inspection. Otherwise corrective action is required. - **F.1.19 analyse failure** (A42122): the activity of analysing the cause of failures. - **F.1.20 approve auxiliary equipment design (A25132):** the activity which leads to the design approval, by the corresponding organisations, of auxiliary equipment. - **F.1.21 approve/certify maintenance** (A42323): the activity which leads to the approval or certification of a maintenance task. - **F.1.22 approve deck machinery design (A25152):** the activity which leads to the design approval, by the corresponding organisations, of deck machinery. - **F.1.23 approve design of ship machinery (A252):** the activity which leads to the design approval, by the corresponding organisations, of ship machinery. The design approval relates to the machinery equipment and systems. The ship certification is not complete with this activity and would need equipment manufacturing surveys, tests and installation surveys as well. - **F.1.24 approve main engine design (A25112):** the activity which leads to the approval, by corresponding organisations, of the main engine. - **F.1.25 approved design:** the design which complies to the classification society's rules and has been approved by a classification society. - **F.1.26 arrangements*:** the arrangements of the ship are the ship's compartments and spaces. Any description of arrangements will include associated definitions of purpose for the compartment or space. - **F.1.27 assemble ship (A33):** the activity that assembles the modular units, the serviced parts and additional material that result from the production of steel sub-sections. The result is an assembled ship, that still has to be tested. - **F.1.28 assemble ship/system (A423124):** the activity of assembling a ship or its systems. - **F.1.29 assemble steel sub-sections*** (A331): the activity of assembling the ship steel sub-sections - **F.1.30 assemble system (A421424):** the activity of assembling the ship systems. - **F.1.31 assembled ship*:** the ship in its assembled form at the end of the construction phase. The assembled ship has to be tested and commissioned at subsequent activities. - **F.1.32 assembling information:** the data resulting from an assembly activity. - **F.1.33 authorities:** the organisations charged with ensuring the compliance to rules, regulations and standards. - **F.1.34 auxiliary equipment:** an equipment that supports one or more main systems or equipment. - **F.1.35 availability, reliability and maintainability information:** the information about the systems, equipment and components, needed for or resulting from availability, reliability and maintainability analysis. - **F.1.36 available resources:** the tools, test equipment, personnel etc. which a shipyard can allocate for maintenance purposes. - **F.1.37 base material data:** the data relating to spare parts, consumables and raw material which are available in shipyard base depots for maintenance purposes. - **F.1.38 base personnel:** the maintenance personnel at the base harbour. - **F.1.39 base tools and equipment:** tools and equipment available at the base or depot for maintenance purposes. - **F.1.40 basic hull parameters***: estimated principal dimensions based on historical data. - **F.1.41 bill of material*:** the list specifying the parts and their materials which is used for ordering the required parts and material. - **F.1.42 budget*:** the cost constraint on the design, building and maintenance of the ship. - **F.1.43 building specifications*:** the
information which specifies the detailed framework for the construction of the ship - **F.1.44 calculate cost of ship*** (A124): this activity describes creation of documents based on technical product data and their estimated manufacturing cost. The results of this activity may contain sale price documents, financing support plan and documents describing funding and possible loans. - **F.1.45 calculate time/cost (A421413):** the activity by which the duration and cost of a maintenance action are estimated. - **F.1.46 calculate time/cost (A423113):** the activity by which the duration and cost of a maintenance action are estimated. - **F.1.47 calculated hours, schedule:** calculated required man-hours, machine-hours and schedule needed to perform a specified maintenance action. - **F.1.48 capacity:** the available resources for maintenance purposes such as the number of available personnel. - **F.1.49 carry out manoeuvring system analysis (A122542):** the activity of completing various engineering analyses on the manoeuvring system as part of design and design approval processes. - **F.1.50 carry out manoeuvring system analysis (A25142):** the activity of completing various engineering analyses on the manoeuvring system as part of design and design approval processes. - **F.1.51 carry out transmission system analysis (A122522):** the activity of completing various engineering analyses on mechanical transmission systems as part of design and design approval processes. - **F.1.52 carry out transmission system analysis (A25122):** the activity of completing various engineering analyses on mechanical transmission systems as part of design and design approval processes. - **F.1.53 certificates**: the certificates issued by the classification society and flag state on completing the ship. - **F.1.54 check boilers (A25222):** the activity of checking the boiler specifications against the rules. - **F.1.55 check deck machinery (A25225):** the activity of checking the deck machinery specifications and design against the rules. - **F.1.56 check design against rules and regulations (A2522):** the activity by class society to ensure that equipment and machinery conform to rules and regulations. - **F.1.57 check main engine (A25221):** the activity of checking the specification and design of the main engine against the rules. - **F.1.58 check manoeuvring system (A25223):** the activity of checking the specification and design of the manoeuvring system against the rules. - **F.1.59 check shafting and propeller (A25224):** the activity of checking the specification and design of main shafts and propeller against the rules. - **F.1.60 classification society:** an independent third-party organisation within the marine industry with its own rules and regulations dealing with mainly safety aspects of the ship throughout its lifecycle. - **F.1.61 collect information about local requirements for panels and elements*** (A4323): the activity which leads to a list of requirements for panels and related elements. - **F.1.62 collect information about safety arrangements* (A4324):** the activity which leads to the specification of data relating to safety arrangements. - **F.1.63 collect information about systems and components (A4322):** the activity which leads to the specification of information relating to systems and components of a system. - **F.1.64 collect owner's information on usage of tank* (A4326):** the activity which leads to information relating to tank usage. - **F.1.65 collect relevant data (A42121):** the activity which leads to the collection of relevant data needed for diagnosis. - **F.1.66 collect survey information about tank to be inspected* (A4321):** the activity which leads to the specification of tank data required prior to tank inspection. - **F.1.67 company objectives:** the business objectives of a company relating to the use of maintenance data/information for future purposes. - **F.1.68 compare values (A42112):** the activity of comparing two values for fault diagnosis purposes. - **F.1.69** complete and approve ship design (A2): the production of ship design documents and the classification drawings using the preliminary design from the bid preparation, as well as the required rules and regulations. The classification drawing may require several iterations with input and redmarking from the classification society. - **F.1.70 complete design of outfitting and distribution systems*** (A26): the selection of the necessary outfitting equipment. The selection is mainly based on former designs and in accordance with the requirements. It also contains the layout of the different types of distribution systems. - **F.1.71 complete design of ship machinery (A25):** the selection and arrangement of the ship equipment in terms of the main engine, associated propulsion system and its auxiliary machinery. - **F.1.72 complete design of ship structure*** (A24): the completion of the ship structural design. - **F.1.73 components:** the equipment or components which are part of the ship systems. - **F.1.74 conclude (A42123):** the activity of concluding a diagnostic investigation. - **F.1.75 condition of class*:** the maintenance condition of a ship from the classification society point of view. An unsatisfactory condition means that the ship no longer fulfils the classification requirements and maintenance deemed to be necessary. - **F.1.76 conduct acceptance trials*** (A344): the activity of sea trials that are performed with the owners and classification society to test the ship against the rules and regulations and the design. The output is the test result documentation. - **F.1.77 conduct contractor sea trials*** (A343): the activity of sea trials performed by the contractor to test the ship against rules and regulations and the design. The output is the test result documentation. - **F.1.78 contract:** the contract is the output from the activity which involves placing the order for the ship. The contract is used as a constraint in subsequent activities such as final design, approval and production. - **F.1.79 corrective actions:** the specification of activities needed to correct the status of a product. - **F.1.80 corrective maintenance plan:** the maintenance plan which specifies the corrective actions needed in order to maintain a failing system to its original specifications, fit for release for operation. - **F.1.81 cost *:** the calculated cost of the ship based on the cost of material and labour. - **F.1.82 cost calculation data*:** the information needed for performing a maintenance task cost analysis. - **F.1.83 create preliminary blades (A1223133):** the activity which leads to preliminary definition of propeller blades including blade overall size and geometric configuration. - **F.1.84 create preliminary design (A122)**: all design activities relevant in a very preliminary stage of ship design in consideration of classification rules, national/international demands, shipyard constraints and owner requirements. The aim of this task is to make a shipyard offer. - **F.1.85 create preliminary general arrangements*** (A1222): the activity that produces the preliminary compartmentation plans from the preliminary hull form definition. - **F.1.86 create preliminary hull form*** (A1221): the activity that is the first step in designing a ship. Using parent ship's main dimensions and form parameters, one or more preliminary hull forms will be generated. - **F.1.87 create preliminary machinery design (A1225):** the activity that produces the preliminary designs for the ship machinery; including the prime mover, shaft system, fuel system, power systems and cargo handling equipment and so on. - **F.1.88 create preliminary outfitting design*** (A1226): the activity that produces the preliminary design for ship's outfitting including distributed systems such as piping and electrical systems. - **F.1.89 create preliminary propeller arrangements (A1223132):** the activity which leads to the definition of the preliminary propeller arrangements in relation to hull. - **F.1.90 create preliminary propeller components (A1223134):** the activity of deciding on the preliminary structure of a propeller in terms of its major components. - **F.1.91 create preliminary structure design*** (A1224): the activity that produces the preliminary steel structure design, including the arrangement of the primary structural members. - **F.1.92 crew:** the personnel onboard a ship. - **F.1.93 crew staff:** the ship crew members in charge of controlling and co-ordinating of shipboard activities (usually captain and officers). - **F.1.94 critical design areas:** the design areas at which a change may be expected, when performing a design approval preview - **F.1.95 data from other sources:** the data needed for performing the failure analysis which are not available from the normal on-board data sources such as logbook and maintenance manual. - **F.1.96 decide post sales maintenance and support** (A123): the activity that puts together the maintenance package for the ship. This is part of the tender document and includes the post sales support. - **F.1.97 deck machinery:** the machinery positioned on the main deck of the ship. - **F.1.98 decommission and disassembly (A5):** the activities that involve disassembly and preparing for reuse or recycling or disposal of machinery, parts, materials and so on. - **F.1.99 define corrective actions (A42131):** the activity which uses the diagnosis report and provides a list of actions needed to be undertaken as corrective maintenance. - **F.1.100 define cost*** (A42134): the activity which leads to the estimation of maintenance cost. - **F.1.101 define resources (A42132):** the activity which leads to a list of required resources needed for maintenance. - **F.1.102 define time (A42133):** the activity which leads to specification of time needed for maintenance. - **F.1.103 deliver auxiliary equipment
(A3333):** the activity which leads to the delivery of the ship equipment to the shipyard. - **F.1.104 deliver machinery (A3331):** the activity which leads to the delivery of the ship machinery to the shipyard - **F.1.105 delivery date:** the date for delivery. - **F.1.106 description of function:** the description of the function that the component to be analysed shall perform. - **F.1.107 design manoeuvring systems (A12254):** the activities which lead to design of the manoeuvring system by the shipyard for the ship. - **F.1.108 design modifications:** the list of modifications made to the original design. - **F.1.109 design transmission system (A12252):** the activities which leads to design of the ship main mechanical transmission system. - **F.1.110 detail survey planning (A4325):** the activity which leads to a detailed plan for survey. - **F.1.111 detailed instructions:** the detailed procedure, resources needed and method of carrying out a maintenance activity. - **F.1.112 detailed schedule:** the detailed timetable for execution of maintenance actions together with a schedule of availability of tools and other resources. - **F.1.113 detailed specification:** the ship equipment and systems specifications as required for approval by the ship owner. - **F.1.114 diagnose (A4212):** the activity which leads to diagnosis of the reason for a failure. - **F.1.115 diagnosis report:** a document describing the conclusion of a failure analysis. It is the basis for preparation of a corrective maintenance plan. - **F.1.116 disassemble ship/system (A423121):** the process of disassembling of a ship or its systems. - F.1.117 disassemble system (A421421): the activity of disassembling a ship system. - F.1.118 distribution & outfitting design*: the design of the distribution systems (electrical and piping) and the outfitting. - **F.1.119 equipment:** a part of the enginering systems that carries out a generally self contained function and to a large extent can be treated as a single item for the purpose of design, acquisition or operation. - **F.1.120 estimate hydrodynamics and powering (A1223):** the activity that approximates hydrodynamic properties data calculations like resistance, propulsion, seakeeping and manoeuvrability for the preliminary hull form. - **F.1.121 estimate hydrodynamics and powering*** (A1223135): the activity which leads to hydrodynamic resistances of a ship and the power needed for ship propulsion. - **F.1.122 estimate manoeuvrability*** (A12233): the activity that deals with approximating the manoeuvrability of the ship and comparison of the results with design requirements. The proof of the ships manoeuvrability will principally be given in practice or by model testing. Measuring of rudder forces and rudder moments as well as of the radius of the turning circle during model tests will be done either in circulating water channels or manoeuvring basins. - **F.1.123 estimate resistance and powering (A12231):** the activity that includes the calculations based on historical data for producing powering and resistance data for the initial preliminary design. - **F.1.124 estimate sea keeping*** (A12232): the activity that calculates the theoretical behaviour of a vessel in a seaway. The solution of the coefficients of equations of motion may be obtained either by analytical or numerical methods. The natural periods of the ship will be calculated like the rolling, pitching and heaving motions. - **F.1.125 evaluate maintenance (A4233):** the activity which leads to evaluation of the whole of the maintenance activity on behalf of either shipyard or owner. - **F.1.126 evaluate request & schedule bid* (A121):** the activities of the shipyard when evaluating the inquiry of the ship owner for a new ship. - **F.1.127 evaluation report:** a document which contains the results of the maintenance evaluation activity and normally references the status, diagnosis, corrective action and maintenance reports. - **F.1.128 execute maintenance (A42142):** the activity which leads to execution and completion of a maintenance task. - **F.1.129 execute maintenance (A42312):** the activity which leads to execution and completion of a maintenance task. - **F.1.130 experience*:** applied expert knowledge. - **F.1.131 failure analysis report:** a document which describes the scope, analysis methodology and result of a failure analysis activity. - **F.1.132 feedback:** the feedback information. - **F.1.133 finalise and approve general arrangements*** (A21): the activity in which the design of a ship general arrangement is finalised as a detailed design. - **F.1.134 finalise and approve hull form*** (A22): the activity in which the hull form is finalised from the preliminary design done in the pre-contract stages. The result is a final and approved hull form design. - **F.1.135 finalise and approve hydrodynamics and powering*** (A23): this includes all relevant hydrodynamic calculations like resistance, propulsion, seakeeping and manoeuvrability. - **F.1.136 finalise auxiliary equipment selection (A2513):** the activity which leads to the selection and ordering of auxiliary equipment. - **F.1.137 finalise deck machinery design (A2515):** the activity which lead to the production of final design for deck machinery. - **F.1.138 finalise machinery design (A251):** the activities which leads to design of selected machinery such as the propeller which are in the scope of this part of ISO 10303. - **F.1.139 finalise main engine selection (A2511):** the activity which leads to the selection and ordering of the main engine. - **F.1.140 finalise maintenance plan (A254):** the activity which leads to preparation of a machinery maintenance plan. - **F.1.141 finalise manoeuvring system design (A2514):** the activity which leads to the design of the manoeuvring system. - **F.1.142 finalise production planning*** (A253): the activities which lead to a production plan. - F.1.143 finalise propeller design (A25122): the activity which leads to the final propeller design. - **F.1.144 finalise selection of components (A25121):** the activity which leads to the selection of various ship equipment. - **F.1.145 finalise selection of components (A25141):** the activity which leads to the selection of various ship equipment. - **F.1.146 finalise transmission system design (A2512):** the activity which leads to the completion of the ship main mechanical transmission system design. - **F.1.147 general arrangements*:** the space arrangement plan from the preliminary or final design stage. - **F.1.148 geometry, geography, technical documentation*:** all documents, describing the ship, its systems and equipment. - **F.1.149 historical data from previous designs:** data held by the shipyard or model basin on previous ship designs and used to estimate the hydrodynamics, powering requirements and sea-keeping. - **F.1.150 hull form sections*:** The design of the hull moulded form at planar sections taken along the longitudinal axis of the ship. - **F.1.151 hull moulded form*:** the definition of the shape of the hull of the ship, resulting from the addition of the aft-body, mid-body and fore-body definitions, which does not take into account the thickness of the material from which the hull is made. - **F.1.152 hydrodynamics & powering results*:** the results of calculations and model basin tests. They contain resistance, propulsion, propeller performance, brake power, service speed, sea keeping and manoeuvrability data. - **F.1.153 hydrostatic table*:** the data which show the hydrostatic properties of the ship. They are a result of calculations at the initial and final design stages. - **F.1.154 info parts to be repaired:** the specific available information on the repair of parts, to be dispatched with parts for repair purposes. - **F.1.155** info parts to be replaced: the specific information relating to replacement of parts. - **F.1.156 info parts to be serviced:** the specific information on the servicing of parts after disassembly of the ship/system. - **F.1.157 information sub-assemblies:** the information on steel sub-assemblies. - **F.1.158 inspection information:** the information resulting from previous inspection which may be used for maintenance and repair purposes. - **F.1.159 inspect ship/system (A42322):** the activity which leads to the inspection of a ship and its equipment. - **F.1.160 install auxiliary equipment (A3334):** the activity which leads to the installation of the auxiliary equipment. - **F.1.161 install equipment (A333):** the activity which leads to the installation of the equipment. - **F.1.162 install machinery** (A3332): the activity which leads to the installation of the machinery. - **F.1.163 install modular build units*** (A332): the activity which leads to the installation of modular build units. - **F.1.164 install modular machinery systems*** (A334): the activity which leads to the installation of modular machinery systems. - **F.1.165** installed equipment: the ship equipment as-installed information. - **F.1.166** integrate changes on auxiliary equipment design (A25131): the process of including design refinements in the auxiliary equipment design in order to generate the final design. - **F.1.167 integrate changes on deck machinery design (A25151):** the process of including design refinements in the deck machinery design in order to generate the final design. - **F.1.168 integrate changes on main engine design (A25111):** the process of including design refinements in the main engine design in order to generate the final design. - **F.1.169 knowledge and experience:** the previous experience and knowledge of companies involved throughout the ship lifecycle. - **F.1.170 laws, rules and regulations:** national laws, statutory regulations and classification society rules that are used to control the design, manufacture, operation, maintenance and scrapping of the ship. - **F.1.171 list of items to be inspected:**
the list of ship items, provided by the classification society or any other authorities to the owner, which needs to be inspected. - **F.1.172 list of required certificates*:** as a result of placing an order, this is the list supplied by the ship owner for certificate requirements. - **F.1.173 list of required personnel:** the list of technical personnel, for carrying out the specific task, including numbers, training and skill (experience) information. - **F.1.174 list of required resources:** the list of required resources including required tools, equipment, material and personnel for completion of a task. - **F.1.175 list of tools and equipment:** the list of tools and equipment needed to carry out a task. - **F.1.176 loading and stability manual*:** the document which details loading and stability information for use by the ship operator. - **F.1.177 loading conditions*:** standard loading conditions, defining the quantities of cargo, ballast water and consumables such as fuel oil and lubrication oil, in each space or compartment, which is used as a basis for design. - **F.1.178 logbook:** the shipboard documentation, recording the main aspects of ship and equipment's operation characteristics, events etc. The logbook is updated daily. - **F.1.179 machinery design:** the design drawings and electronic models of the ship mechanical systems. An output from the final design process. - **F.1.180 machinery systems:** an engineering system comprising of reciprocating or rotating equipment with the primaryfunction of providing mechanical power against a load. - **F.1.181 main engine:** the information required in order to select the main engine. - **F.1.182 maintain a ship (A42):** the activity of bringing up a ship to its acceptable sailing condition, normally after a failure or a predefined period of operation. - **F.1.183 maintain at base (A422):** the execution of the maintenance task at base (port). - **F.1.184 maintain at yard (A423):** the execution of the maintenance task at shipyard. - **F.1.185 maintain on board (A421):** the execution of the maintenance task on-board ship at sea. - **F.1.186 maintenance history:** the documented history of maintenance information, normally beginning with the commissioning phase of ship lifecycle. - **F.1.187 maintenance personnel:** the personnel or crew needed to perform the maintenance activity. - **F.1.188 maintenance reports:** documents (reports) which describe all aspects of a specific completed maintenance task including procedures used, equipment or system information, actions carried out and results. - **F.1.189 make report** (A421426): the activity which leads to the preparation of the task report. - **F.1.190 make report** (A423126): the activity which leads to the preparation of the task report. - **F.1.191 manoeuvering system:** a system used to perform planned movement or change from the straight steady course and speed of a ship. - **F.1.192 manoeuvring system design:** the design specification and drawings of the ship manoeuvring system. - **F.1.193 manufacturing restrictions :** a constraint on the ship construction and design processes governed by available technology and shipyard facilities. - **F.1.194 material allocation/ordering*:** the data describing the necessary material supply for production. - **F.1.195 material and certificates*:** the name and specification of materials and the required quality and quantity certificates. - **F.1.196 material data*:** the specification of material properties. - **F.1.197 material list*:** the list of raw materials needed to manufacture the ship. A result of the final design process. - **F.1.198 measurement report:** the document (report) containing the measured values of a parameter from an instrument, related to condition (status) of systems. - **F.1.199 model basin consultants*:** the organisations which perform model basin tests to calculate hydrodynamics and powering data. - **F.1.200 model basin theory*:** the theory, along with empirical data, used by the model basin consultants to calculate the hydrodynamics and powering information. - **F.1.201 modifications from machinery:** modifications due to changes to machinery. - **F.1.202 modification to hull form*:** modifications to the hull shape due to feedback from hydrodynamics and powering results and the final design process. - **F.1.203 modular build units*:** the modular assemblies of ship steel sub-sections, normally produced in the shipyard. These are later on assembled onto the ship. - **F.1.204 modular machinery systems*:** the modular assemblies of ship machinery systems, either assembled in or delivered to the shipyard. These are later on assembled onto the ship. - **F.1.205 monitor status (A4211):** the process of monitoring the status of equipment. - **F.1.206 noise and vibration level:** the equipment and system noise and vibration levels that influence the design of ship systems. - **F.1.207 notify owner about items due to survey (A431):** the activity by which the ship owner is informed of the items which need to be surveyed by the class society. - **F.1.208 observe signal (A42111):** the activity or process by which a specific signal or parameter is being monitored. - **F.1.209 offer*:** the result of the preliminary design process. It will contain the shipyard's data for producing the requested ship. - **F.1.210 offer guidelines*:** the offer guidelines include the data necessary to make an unconditional offer to the ship owner. - **F.1.211 on-board material data:** the data relating to spare parts and consumables for on-board maintenenance. - **F.1.212 on-board tools and equipment:** the tools and testing equipment, on-board-ship, needed for maintenance. - **F.1.213 operate and maintain a ship (A4):** the activity that describes the running and maintenance of the ship during its service lifetime. - **F.1.214 operate a ship** (A41): the activity of keeping a ship in operation. - **F.1.215 operational history:** the operational historical data, normally recorded in the ship logbook. - **F.1.216 operational information:** accumulated information during the operation phase of the ship used for maintenance and in the final scrapping stage. - **F.1.217 operation manual:** the document (manual) describing how an equipment or system should be operated. - **F.1.218 owner:** the organisation which requests, orders and takes delivery of the ship. - **F.1.219 owner request, requirements :** the requirements document that is submitted to the shipyard by the owner upon the invitation to tender. - **F.1.220 perform design approval (A2521):** the activity which is mainly carried out by the classification society in approving the design of certain equipment and systems. - **F.1.221 perform maintenance (A4214):** the activity of carrying out a maintenance task. - **F.1.222 perform maintenance** (A4231): the activity of carrying out a maintenance task. - **F.1.223 perform ship lifecycle (A0):** all of the lifecycle activities associated with a ship. - **F.1.224 place order*** (A13): the owner places an order for a ship from the bids that have been submitted. From this a contract is awarded. - **F.1.225 planned maintenance system:** a software system relying on the data created during the final design process and used during the operation and maintenance of the ship. - **F.1.226 power requirements for engine:** the engine power resulting from the hydrodynamics and powering calculations which is used in the selection of the main engine. - **F.1.227 pre-layout*:** the very initial layout of the ship which is produced during the bid evaluation stage and is the basis for the preliminary design. - **F.1.228 predict brake power and service speed*** (A122314): the activity that estimates the required propulsive power and speed in order to be able to choose the correct size of main engine and propeller. - **F.1.229 predict propeller performance (A122313)**: the activity that uses propulsion data to produce an initial propeller functional design. - **F.1.230 predict propulsion data*** (A122312): an activity that estimates propulsion data including propulsive power and other data, such as propulsive coefficient, propeller coefficient, hull efficiency, relative rotative efficiency, thrust deduction fraction and wake fraction. - **F.1.231 predict resistance*** (A122311): the activity that predicts the ship resistance. The resistance calculation will be done using historical data related to the geometry of the ship. - **F.1.232 preliminary design :** the preliminary ship design, which is completed in the phases leading up to the submittance of the tender. - **F.1.233 preliminary hull form***: the definition of the hull form, as a result of the preliminary design process. Used in the offer documents and for preliminary hydrodynamics and powering calculations. - **F.1.234 preliminary machinery design:** the overall specifications of the ship mechanical systems, resulting from the preliminary design process. Used in the offer document and for preliminary compartment design, hydrodynamics and powering calculations. - **F.1.235 preparation report:** a document. - **F.1.236 prepare bid (A12):** all activities of the shipyard regarding preparation and submission of the offer to the ship owner for the ship to be built. - **F.1.237 prepare for maintenance at base/yard (A4215):** all activities relating to the preparation of the ship or its equipment/systems for a maintenance task to be carried out at the base harbour/shipyard. - **F.1.238 prepare maintenance** (A42141): all activities relating to the preparation of the ship or its equipment/systems for a maintenance task. - **F.1.239 prepare maintenance (A42311):** all activities relating to the preparation of the ship or its equipment/systems for a maintenance task. - **F.1.240 prepare ship for survey (A433):** all activities relating to the preparation of a ship or its equipment/systems for survey. - **F.1.241 present
offer*** (A125): the activity concerned with presentation of the offer to the ship owner for building a new ship. - **F.1.242 preventive maintenance procedures:** the document describing the procedures for preventive maintenance. - **F.1.243 previous design*:** an existing ship design, that is used as the basis for a new ship design. - **F.1.244 produce and approve reference documents*** (A35): the activity of creating the technical documentation for the ship, using production information. The output includes the loading and stability manual. - **F.1.245 produce and inspect ship (A3):** the activity that describes how the design is transformed into a real product. In the production phase the design has to prove its produceability. The production is controlled by the schedule, the approved design, the contract and any manufacturing restrictions. The result of the activity is the completed ship and technical documentation and certificates. - **F.1.246 produce modular build units*** (A32): the activity which leads to the production of the modular units which will make up the completed ship. They are produced from the steel sub-sections and their production is controlled by the schedule, contract, the approved design, and any manufacturing restrictions. The results of the activity are the modular units which are assembled into the ship. - **F.1.247 produce steel sub-sections*** (A31): the activity which leads to the production of the steel sub-sections which make up the structure of the completed ship. This is controlled by the schedule, contract, the approved design, and any manufacturing restrictions. - **F.1.248 product component information**: the technical data of the components that will be incorporated into the ship. These are taken into consideration when the preliminary designs are being made. - **F.1.249 production information*:** information describing a product, e.g. dimensions, mechanical properties, workshop information. - **F.1.250 product model data:** information describing a product. In this case, all the information about the ship over its lifecycle belongs to the product model data. - **F.1.251 propeller design:** the design of the propeller or propulsor as a result of the hydrodynamics and powering calculations. The design controls some of the machinery design activity. - **F.1.252 propeller functional design:** the functional design data of the propeller. - **F.1.253 propeller theory:** the body of knowledge based on the historical experience and abstract ideas of ship propeller performance. - **F.1.254 proposed designs***: the output from the preliminary design stage that includes the best short list of ship designs that satisfies the proposed owner's requirements. - F.1.255 qualification requirements: the required qualification of the personnel to be allocated to a task - **F.1.256 quality assurance*:** an organisation within the shippard that has the task to audit the shippard organisation and applied processes in a manner such that the quality of the resulting product is assured. - **F.1.257 refined design for classification:** the new design which would require the approval of the classification society. - **F.1.258 regular wave theory *:** the body of knowledge which relates the motion response of a ship in waves of constant height and period. - **F.1.259 release for operation (A4232):** the process of releasing a ship for operation. - **F.1.260 relevant data:** the data needed for carrying out a specific task. - **F.1.261 repair information:** the information about the repair task including procedures, resource data and organisation responsible. - **F.1.262 repair parts** (A421423): the activity which leads to the maintenance of parts. - **F.1.263 repair parts (A423123):** the activity which leads to the maintenance of parts. - **F.1.264 request a ship*** (A11): the first activities of a ship owner when intending to order a ship. Having definite ideas regarding appearance and functionality of the ship, the owner expresses these ideas in an inquiry to the shipyard. - **F.1.265 request for additional data:** a request for extra information to enable the completion of a task. - **F.1.266 request for changes***: changes that are requested to the ship design as a result of production experience or difficulties with the realisation of the ship design. - **F.1.267 request for other level maintenance:** the request for maintenance on another level as a result of a diagnosis activity. - **F.1.268 request to change corrective actions:** the request for changing the corrective actions for reasons that there are strong concerns about the feasibility of the planned actions. - **F.1.269 request to change corrective maintenance plan:** the request for changing the corrective maintenance plan for stated reasons. - **F.1.270 request to change working plan:** the request for changing the applicable working plan for reasons stated in the request. - **F.1.271 resistance and powering results**: the results for the resistance and powering of the ship determined form model tests. - **F.1.272 resistance and shaft power:** the ship resistance and required propulsive power. - **F.1.273 resistance theory***: the theory used to predict the resistance of the hull to forward motion in the sea. - **F.1.274 resource allocation*:** the result of the capacity planning. - **F.1.275 resources:** shipyard, classification society and consultants. - **F.1.276 results of zigzag, initial turning etc.***: the manoeuvring test results as from model basin tests or sea trials. - **F.1.277 review maintenance report (A42321):** the activity which analyses the maintenance report. - **F.1.278 reviewed maintenance report:** the document (maintenance report) which has undergone full review. - F.1.279 scantling requirements for plates stiffeners and other strength elements for all the panels, surrounding this tank*: the dimension of stiffeners and other strength elements. - **F.1.280 schedule:** the time table for a task. - **F.1.281 schedule (A421411):** the preparation of the time table for a task. - **F.1.282 schedule (A423111):** the preparation of the time table for a task. - **F.1.283 scrap a ship:** all activities relating to the last stage of the ship's lifecycle. It consists of the decommissioning and dismantling of the ship. - **F.1.284 scrapping plan:** the document which provides the schedule and resources required to dismantle the ship. - **F.1.285 select auxiliary equipment (A12253):** the activities which lead to the selection of auxiliary equipment. - **F.1.286 select components (A122521):** the activity which leads to the selection of ship equipment. - **F.1.287 select components (A122541):** the activity which leads to the selection of ship equipment. - F.1.288 select deck machinery (A12255): the activity which leads to the selection of deck machinery. - **F.1.289 select main engine (A12251):** the activities which lead to the selection of the main engine by the shipyard. - **F.1.290 service information:** the information/data about the service activities. - **F.1.291 service load required draughts etc.***: information about the service activities of the ship. - **F.1.292 service parts (A421422):** the activity of testing, upgrading and changing parts within a survey or maintenance activity. - **F.1.293 service parts (A423122):** the activity of testing, upgrading and changing parts within a survey or maintenance activity. - **F.1.294 ship :** a large waterborne vessel whose design, manufacture and lifecycle operation is governed by the principles of naval architecture and in accordance with international and classification society regulations. - **F.1.295 ship product data:** the data describing the ship as a product. - **F.1.296 ship weight modifications*:** modification to ship weight due to the preliminary structure design. - **F.1.297 shipyard:** an organisation that designs and builds, maintains or repairs ships. - **F.1.298 shipyard and classification society:** the shipyard and classification society organisations. - **F.1.299 shipyard and consultants:** the resources of the shipyard which builds the ship and consultants who provide assistance in design. - **F.1.300 shipyard (experts and tools):** the shipyard's experts and software tools are the means by which the ship design is carried out. - **F.1.301 short and long term responses***: the results of estimation of sea keeping ability that take into account both short term journeys in local seas and long term world wide journeys. - **F.1.302 signal:** any indicative thing such as measured values by meters, a visual impression etc. - **F.1.303 specify and select auxiliary equipment (A122532):** all activities associated with defining the specification of auxiliary equipment and its selection. - **F.1.304 specify and select deck machinery (A122551):** all activities associated with defining the specification of deck machinery and its selection. - **F.1.305 specify and select main engine (A122511):** all activities associated with defining the specification of the main engine and its selection. - **F.1.306 specify initial propeller characteristics (A1223131):** the activity which leads to the definition of overall propeller characteristics. - **F.1.307 specify ship (A1):** all activities associated with the production of a detailed specification of the ship prior to a contract being placed. - **F.1.308 speed:** the design speed of the ship, as specified by the owner in the contract. - **F.1.309 status report:** a document (report) detailing the status of an equipment or system. The status report results from condition monitoring. - **F.1.310 steel sub-sections:** the sub-sections of the steel structure which are outfitted with the machinery and distribution systems before assembly. - **F.1.311 structural design***: the design of the hull structure including hull, bulkheads, decks and stiffeners. - **F.1.312 structure*:** the steel structure of the ship
including hull, bulkheads, decks and stiffeners. - **F.1.313 sub-sections*:** the steel sub-sections of a ship structure. - **F.1.314 suppliers:** the organisations which supply equipment to shipyard and ship owner. - **F.1.315 support :** all the organisations and personnel who contribute to the lifecycle of the ship. - **F.1.316 survey a ship (A43):** the activity which leads to the survey of a ship or its equipment. - **F.1.317 survey a ship** (A434): the activity which leads to the survey of a ship or its equipment. - **F.1.318 survey plan:** a document outlining the details of a survey plan with information such as critical areas, corrosion, risk schema, name of components/systems to be inspected. - **F.1.319 survey planning (A432):** the activity which leads to preparation of a survey plan. - **F.1.320 survey report:** the document (report) stating the results and details of a survey activity. - **F.1.321 survey status:** the data specifying the current status of a ship with regard to survey. - **F.1.322 tank usage documentation:** a document specifying the usage of a tank. - **F.1.323 technical documentation:** the documents which provide technical description for performing preventive maintenance. - **F.1.324 technical documentation inspection report:** a document. - **F.1.325 technical requirements***: the detailed ship specification issued by the owner on the award of a contract to build a ship. - **F.1.326 test (A421425):** the activity of testing a part, a component, equipment or a system to its performance according to the specification. - **F.1.327 test (A423125):** the activity of testing a part, a component, equipment or a system to its performance according to the specification. - **F.1.328 test results:** the maintenance test results are the results of functional tests carried out after the execution of maintenance tasks. - **F.1.329 test ship** (A34): this activity tests the actual ship against the design, contract and rules and regulations. The structure is tested and sea trials including testing of machinery are carried out. The test results are an output from this activity. - **F.1.330 test structures*** (A341): the steel structures are tested against rules and regulations and the design. The output is the test result documentation. - **F.1.331 test systems** (A342): the ship's systems including outfitting, machinery and mission systems are tested against rules and regulations and the design. The output is the test result documentation. - **F.1.332 time/cost criteria:** the shipyard criteria for calculating cost and time of a task (e.g. maintenance). - **F.1.333 time/cost overview:** estimated cost/time needed for carrying out a task. - **F.1.334 tools and equipment ready for use:** the details of available tools and equipment for maintenance. - **F.1.335 tools and equipment requirements:** the details of required tools and equipment for maintenance. - **F.1.336 total resistance*:** the resistance of the hull due to motion in the water. - **F.1.337 transmission system:** a system by which motive power from a prime mover is made available at load and matched to load (e.g. shafting system connecting main engine to propeller, or shafting system connecting auxiliary engine to generator). - **F.1.338 transmission system design:** the definition of the transmission system design. Includes all the information, normally in drawing form, including those of the selected equipment. - F.1.339 transportation needs: a constraint which determines the specification for ship constructions. - **F.1.340 update logbook** (A42324): the activity of recording new operational data in the ship logbook. - **F.1.341 update maintenance history (A42325):** the activity of recording new maintenance data in the ship maintenance history document. - F.1.342 updated logbook: the logbook resulting from the inclusion of new operational data. - **F.1.343 updated maintenance history:** the maintenance history document resulting from inclusion of new maintenance data. - **F.1.344 updated survey status:** the status report resulting from inclusion of new survey data. - **F.1.345 validate initial propeller (A1223136):** the activity of validating the initial propeller design for satisfying the hydrodynamic and powering requirements of the ship. - **F.1.346 weights and compartmentation*:** the ship arrangement and weight details. - **F.1.347 weights distribution*:** the details of the weight distribution taking account of steel weight, machinery weights and cargo and the associated floating position of the ship. - **F.1.348 work calculation data*:** the data such as labour rates, depreciation rates, operating costs etc. needed for calculation of financial estimates. - **F.1.349 work load*:** the total effort required to build the chosen ship design as estimated by the shipyard and its consultants. - **F.1.350 write/select instructions (A421412):** the process of selecting the instructions needed for carrying out a task. - **F.1.351 write/select instructions (A423112):** the process of selecting the instructions needed for carrying out a task. - **F.1.352 yard:** an organisation that designs and builds, maintains or repairs ships. - **F.1.353 yard facilities:** all the equipment, tools, infrastructure, personnel etc. of a shipyard used for ship production. - **F.1.354 yard material data*:** the data relating to available, equipment, tools, components, parts and raw material in a shipyard. - **F.1.355 yard personnel*:** the technical personnel of a shipyard. - **F.1.356 yard staff*:** the staff of a shipyard. **F.1.357 yard tools and equipment*:** the tools and equipment of a shipyard. ## F.2 Application activity model diagrams The application activity diagrams are given in Figures F.1 to F.44. The graphical form of the application activity model is presented in the IDEF0 activity modelling format. Activities and data flows that are out of the scope of this part of ISO 10303 are marked with asterisks. Figure F.1 - Node A0: ship life cycle description Figure F.2 – Node A0: perform ship life cycle Figure F.3 – Node A1: specify ship Figure F.4 – Node A12: prepare bid Figure F.5 – Node A122: create preliminary design Figure F.6 – Node A1223: estimate hydrodynamics and powering Figure F.7 – Node A12231: estimate resistance and powering Figure F.8 – Node A122313: predict propeller performance Figure F.9 – Node A1225: create preliminary machinery design Figure F.10 – Node A12251: select main engine Figure F.11 – Node A12252: design transmission system Figure F.12 – Node A12253: select auxiliary equipment Figure F.13 – Node A12254: design manoeuvring systems Figure F.14 – Node A12255: select deck machinery Figure F.15 – Node A2: complete and approve ship design Figure F.16 – Node A25: complete design of ship machinery Figure F.17 – Node A251: finalise machinery design Figure F.18 – Node A2511: finalise main engine selection Figure F.19 – Node A2512: finalise transmission system design Figure F.20 – Node A2513: finalise auxiliary equipment selection Figure F.21 – Node A2514: finalise manoeuvring system design Figure F.22 – Node A2515: finalise deck machinery design Figure F.23 – Node A252: approve design of ship machinery Figure F.24 – Node A2522: check design against rules and regulations Figure F.25 – Node A3: produce and inspect ship Figure F.26 – Node A33: assemble ship Figure F.27 – Node A333: install equipment Figure F.28 – Node A34: test ship Figure F.29 – Node A4: operate and maintain a ship Figure F.30 – Node A42: maintain a ship Figure F.31 – Node A421: maintain on board Figure F.32 – Node A4211: monitor status Figure F.33 – Node A4212: diagnose Figure F.34 – Node A4213: adjust maintenance programme Figure F.35 – Node A4214: perform maintenance Figure F.36 – Node A42141: prepare maintenance Figure F.37 – Node A42142: execute maintenance Figure F.38 – Node A423: maintain at yard Figure F.39 – Node A4231: perform maintenance Figure F.40 – Node A42311: prepare maintenance Figure F.41 – Node A42312: execute maintenance Figure F.42 – Node A4232: release for operation Figure F.43 – Node A43: survey a ship Figure F.44 – Node A432: survey planning ## Annex G (informative) ## **Application reference model** This annex provides the application reference model (ARM) for this part of ISO 10303. The application reference model is a graphical representation of the structure and constraints of the application objects specified in clause 4. The application reference model is independent from any implementation method. The graphical form of the application reference model is presented in EXPRESS-G. Figures G.1 to G.46 give the ARM for this part of ISO 10303. Figure G.1 - Graphical notation of the major aspects of the configuration_definitions UoF schema (figure 1 of 1) Figure G.2 - Graphical notation of the major aspects of the cranes UoF schema $\,$ (figure 1 of 3) Figure G.3 - Graphical notation of the major aspects of the cranes UoF schema (figure 2 of 3) Figure G.4 - Graphical notation of the major aspects of the cranes UoF schema (figure 3 of 3) Figure G.5 - Graphical notation of the major aspects of the diesel_engines UoF schema (figure 1 of 2) Figure G.6 - Graphical notation of the major aspects of the diesel_engines UoF schema (figure 2 of 2) Figure G.7 - Graphical notation of the major aspects of the external_references UoF schema (figure 1 of 1) Figure G.8 - Graphical notation of the major aspects of the gas_material_properties UoF schema (figure 1 of 1) Figure G.9 - Graphical notation of the major aspects of the lifting_equipments UoF schema (figure 1 of 1) Figure G.10 - Graphical notation of the major aspects of the liquid_material_properties UoF schema (figure 1 of 2) Figure G.11 - Graphical notation of the major aspects of the liquid_material_properties UoF schema (figure 2 of 2) Figure G.12 - Graphical notation of the major aspects of the local_co_ordinate_systems UoF schema (figure 1 of 1) Figure G.13 - Graphical notation of the
major aspects of the machineries UoF schema (figure 1 of 2) Figure G.14 - Graphical notation of the major aspects of the machineries UoF schema (figure 2 of 2) Figure G.15 - Graphical notation of the major aspects of the maintenance_tasks UoF schema (figure 1 of 1) Figure G.16 - Graphical notation of the major aspects of the measure_with_units UoF schema (figure 1 of 1) Figure G.17 - Graphical notation of the major aspects of the mechanical_machineries UoF schema (figure 1 of 1) Figure G.18 - Graphical notation of the major aspects of the mechanical_product_anomalies UoF schema (figure 1 of 2) Figure G.19 - Graphical notation of the major aspects of the mechanical_product_anomalies UoF schema (figure 2 of 2) Figure G.20 - Graphical notation of the major aspects of the mechanical_product_components UoF schema $\,$ (figure 1 of 1) Figure G.21 - Graphical notation of the major aspects of the mechanical_product_connections UoF schema $\,$ (figure 1 of 1) Figure G.22 - Graphical notation of the major aspects of the mechanical_product_definitions UoF schema (figure 1 of 3) $\,$ Figure G.23 - Graphical notation of the major aspects of the mechanical_product_definitions UoF schema $\,$ (figure 2 of 3) Figure G.24 - Graphical notation of the major aspects of the mechanical_product_definitions UoF schema (figure 3 of 3) Figure G.25 - Graphical notation of the major aspects of the mechanical_product_equipments UoF schema $\,$ (figure 1 of 1) | 1317 | VV I J | 10303- | ZZDLE | | |------|--------|--------|-------|---| | ID O | 111 | 10303- | 440(L | • | Figure G.26 - Graphical notation of the major aspects of the mechanical_product_general_characteristics UoF schema (figure 1 of 1) Figure G.27 - Graphical notation of the major aspects of the mechanical_product_representations UoF schema $\,$ (figure 1 of 1) Figure G.28 - Graphical notation of the major aspects of the mechanical_product_structures UoF schema (figure 1 of 2) Figure G.29 - Graphical notation of the major aspects of the mechanical_product_structures UoF schema (figure 2 of 2) Figure G.30 - Graphical notation of the major aspects of the mechanical_product_systems UoF schema (figure 1 of 1) Figure G.31 - Graphical notation of the major aspects of the mechanical_products UoF schema (figure 1 of 1) Figure G.32 - Graphical notation of the major aspects of the other_equipments UoF schema (figure 1 of 1) Figure G.33 - Graphical notation of the major aspects of the other_tasks UoF schema (figure 1 of 1) Figure G.34 - Graphical notation of the major aspects of the part41_resources UoF schema (figure 1 of 1) Figure G.35 - Graphical notation of the major aspects of the part42_resources UoF schema (figure 1 of 1) Figure G.36 - Graphical notation of the major aspects of the RAM_characteristics UoF schema $\,$ (figure 1 of 1) Figure G.37 - Graphical notation of the major aspects of the reciprocating_machineries UoF schema (figure 1 of 1) Figure G.38 - Graphical notation of the major aspects of the screw_propellers UoF schema (figure 1 of 3) Figure G.39 - Graphical notation of the major aspects of the screw_propellers UoF schema (figure 2 of 3) Figure G.40 - Graphical notation of the major aspects of the screw_propellers UoF schema (figure 3 of 3) Figure G.41 - Graphical notation of the major aspects of the ships UoF schema (figure 1 of 1) Figure G.42 - Graphical notation of the major aspects of the solid_material_properties UoF schema (figure 1 of 1) Figure G.43 - Graphical notation of the major aspects of the task_definitions UoF schema (figure 1 of 2) Figure G.44 - Graphical notation of the major aspects of the task_definitions UoF schema (figure 2 of 2) Figure G.45 - Graphical notation of the major aspects of the tasks UoF schema (figure 1 of 1) Figure G.46 - Graphical notation of the major aspects of the time_and_events UoF schema (figure 1 of 1) ### Annex H (informative) #### AIM EXPRESS-G To be completed at a later date. # Annex J (informative) ### **AIM EXPRESS listing** To be completed at a later date. ## Annex K (informative) #### **Bibliography** 1. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY; *Integration Definition for Functional Modelling (IDEFO)* 21st December 1993, National Institute of Standards and Technology Draft Federal Processing Standards Publication 183. ## Annex L (informative) #### **Technical discussion** #### L.1 Introduction This annex has been prepared in order to provide the general and introductory information on technical methodology adopted within this part of ISO 10303. This annex describes the following: - 1. An introduction to STEP and ship product related Application Protocols with special reference to Part 226 on Ship Mechanical Systems. - 2. Concepts common to all ship product Application Protocols, including type hierarchies related to concept of item, definitions and association of definitions to item. - 3. Architecture of AP226 data model including the AP226 data planning model and description of how the full scope of AP226 is embodied in the data model. The expected audience of this annex are those who intend to either review this part of ISO 10303 or subsequently use and implement this standard. #### L.2 STEP and Ship Application Protocols #### L.2.1 What is Step? The STEP initiative was officially begun in 1984 as a means of facilitating concurrent engineering within the manufacturing industry. STEP is the widely used name for **ISO 10303 - Product Data Representation and Exchange** and is being developed under the guidance of the ISO Technical Sub-Committee **TC184/SC4**. The aim of STEP, the <u>ST</u>andard for the <u>Exchange</u> of <u>Product</u> model data, is the complete and unambiguous representation of a product such as a ship, a car, or an airplane, throughout its lifetime, in a computer interpretable neutral format. As such, the STEP initiative is directed towards enabling a product to be consistently represented from the requirement definition stage of its life, through the conceptual design, production and through-life operation and maintenance stages and then finally into the decommissioning phases. The ability to define data will enable organizations to reuse, exchange and share data to mutual advantage. With so much variety, it would be easy for STEP to be too complex to be useful. To avoid this, the STEP standard has user specific parts, each of which describes: - The standard data definitions for that particular application area. - How that data will be exchanged or shared These parts are known as **Application Protocols** (**AP**). ## L.2.2 The STEP Ship Model The STEP ship model is a subset of the wider ISO STEP initiative. It currently comprises five application protocols which are under development. These are: | AP215 | Ship Arrangements | AP218 | Ship Structures | |-------|---------------------|-------|-------------------------| | AP216 | Ship Moulded Forms | AP226 | Ship Mechanical Systems | | AP217 | Ship Piping Systems | | • | The above series of ship product application protocols assumes that the ship as a product can be divided into separate ship systems such that each covers a key element of the ship for its entire life cycle. These key systems are: ship moulded forms, ship arrangements, ship distribution systems (piping, heating, ventilation and air conditioning, and electrical/cableway), ship structure, ship mechanical systems, ship outfit and furnishing, and ship mission systems (see Figure L.1). Figure L.1 - Ship product application protocols Each separate system is described by one or more different application protocols. The development of these application protocols involves input from organisations from all aspects of the shipping community world-wide: shipbuilders, marine engineering component suppliers, shipowners, classification societies and so on. ## L.2.3 AP226: Ship Mechanical Systems The scope of the AP226 encompasses the following physical systems: propulsion systems, auxiliary systems and deck machinery including all of their major equipment. Each of these systems are currently broken down into sub-groupings in order to facilitate information capture for various components within the decomposition hierarchical structure. These are documented in Annex M of this Part of ISO 10303. AP226 will provide a life cycle view of the above systems covering information requirement from concept through design/selection, operation, monitoring, inspection to decommissioning (see Figure L.2). This life cycle view will provide a powerful infrastructure for developing data storage, data handling and application modules for concurrent engineering in shipbuilding and for ship-board systems and ship to shore data communication in shipping. Figure L.2 - Schematic representation of ship mechanical system's life cycle concept #### L.3 Concepts Common to Ship Application Protocols ISO 10303-226 is being developed to support the exchange and sharing of Ship Mechanical Systems data. ISO 10303-226 has been developed in conjunction with other ship product application protocols so that important shipbuilding concepts are common and inter-operable within the STEP standard. #### L.3.1 Mechanical Product Type Hierarchy The method by which this part of ISO 10303 generalises and integrates the information spanning the domain of a large number of mechanical products (see 3.8.103) is via a hierarchical partitioning commonly known as a type hierarchy. The nature of such a hierarchy is that those objects close to the root of the hierarchy represent the more general objects, while those at the leaves represent the most specialised. The main components of the type hierarchy employed in this part of ISO 10303 are shown in Figure L.3. Fundamental to the organisation of the information is the concept of the item (see 3.8.82) within the wider ship APs and the mechanical product within this part of ISO 10303. The mechanical product is a discrete identifiable thing with which definitions (see 3.8.43) and activities (see
3.8.2) are associated. It serves as the most general object from which more specialised objects are derived. ## L.3.2 Definitions Type Hierarchy Definitions describe mechanical products and are, as a result, the descriptive information-bearing entities of the model. A definition may be further classified as a physical, functional and so on definition. A mechanical product may have many different versions of definitions. The main components of the definitions type hierarchy employed in this part of ISO 10303 are shown in Figure L.4. #### L.4 Architecture of the data model The main structure of the data model embodied in the ARM of AP226 is characterised as the type hierarchies shown in Figures L.3 and L.4 in which general constructs (e.g. Mechanical Product, Definition) are successfully specialised in each lower level of the hierarchy. This characteristic provides both flexibility and a mechanism by which very specialised constructs (e.g. "diesel_engines", "RAM_data" and so on) can be described. In addition to flexibility and the ability to selectively specialise concepts of interest, this structure provides the following advantages; - The top levels of the hierarchy can be effectively integrated and aligned with the core concepts and facilities common to the entire set of ship-related application protocols, thus providing for the possibility of inter-AP integration. - The mid-levels of the hierarchy can be specialised into constructs describing the major types of shipboard systems and equipment. - The lowest levels of the hierarchy can be fully specialised into constructs to describe specific items of mechanical products (e.g. diesel engine,....). In dealing with ship mechanical systems, which are effectively a composition of hundreds and thousands of various mechanical products, the approach taken seems to provide a solid basis for capturing all the industrial requirements. Figure L3 - Mechanical product type hierarchy Figure L.4 - AP226 product definition type hierarchy #### L.5 AP226 Data Planning Model #### L.5.1 - What is a data planning model A data planning model presents all the units of functionality (UoF) together with their major relationships (see Figure L.5). As such, it provides an overview of the Application Reference Model (ARM) without too much detail. It can be used to check whether the different components of the model fit properly together. It is generally agreed that such a data planning model is useful when dealing with complex product models such as those developed within STEP. The data models developed within STEP are documented in EXPRESS and EXPRESS-G and as such are not fully comprehensible to application experts. A data planning model can to some extent overcome this shortcoming. This section presents the data planning model for AP226. The main audience of this section is assumed to be the application experts. ## L.5.2 Data planning model Figure L.5 shows the data planning model, representing all the AP226 UoFs. A brief description of the role of each UoF follows: **configuration_definitions:** The configuration_definitions UoF specifies the concepts for keeping high level records and information relating to product identification and its usage context. Concepts such as associating the product to contracts/projects and assigning the ownership of product are supported. The configuration_definitions UoF also supports the life cycle identification of a mechanical product and whether a mechanical product represents a conceptual, designed, planned or a real thing. **cranes:** The cranes UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a crane. **diesel_engines:** The diesel_engines UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a diesel engine. **external_references:** The external_references UoF specifies an external reference mechanism to assign additional documentation in electronic or non-electronic form to the product, task/activity or definitions. The external_references UoF also facilitates access to information, standard or non-standard, on ship mechanical systems that are outside the scope of this part of ISO 103030. **gas_material_properties:** The gas_material_properties UoF specifies the framework for grouping of the gas properties into physical, chemical and other types of properties and their association with a gaseous material. **lifting_equipments:** The lifting_equipments UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a lifting equipment. **liquid_material_properties:** The liquid_material_properties UoF specifies the framework for grouping of the liquid properties into physical, chemical and other types of properties and their association with a liquid material. **local_co_ordinate_systems:** The local_co_ordinate_systems UoF specifies location of a mechanical product within the coordinate system. **machineries:** The machineries UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a machinery (see 3.8.88). **maintenance_tasks:** The maintenance_tasks UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a maintenance task. **measure_with_units:** The measure_with_units UoF specifies the concept for representing measures for physical quantities together with their units. **mechanical_machineries:** The mechanical_machineries UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a mechanical machinery (see 3.8.101). **mechanical_product_anomalies:** The mechanical_product_anomalies UoF specifies the concept and framework for type hierarchy and grouping of different types of engineering information relating to product anomaly (see 3.8.6). **mechanical_product_components:** The mechanical_product_components UoF specifies the concept for defining the type hierarchy and classification of the mechanical components not defined in other UoFs **mechanical_product_connections:** The mechanical_product_connections UoF specifies the concept for defining the physical connections between mechanical products. **mechanical_product_definitions:** The mechanical_product_definitions UoF specifies the high level concept and framework for type hierarchy and grouping of all the engineering information (descriptions and properties) which are attributable to mechanical products. **mechanical_product_equipments:** The mechanical_product_equipments specifies the high-level concept for representing the generic class of equipment (see 3.8.58) and association of all the relevant definitions (see 3.8.43) to this class. **mechanical_product_general_characteristics:** The mechanical_product_general_characteristics UoF specifies the concept for collecting all the information which is attributable to general characteristics (see 3.8.77) of a mechanical product. **mechanical_product_representations:** The mechanical_product_representations UoF specifies the concept for the representation of a mechanical product's detailed geometric definitions in the form of shape representation (solid model) and drawing. The mechanical_product_representations UoF also facilitates the exchange of identification information on drawings, in addition to the exchange of drawing themselves. **mechanical_product_structures:** The mechanical_product_structures UoF defines the internal composition (see 3.8.26), external participation (being part of something else), connectivity, position and orientation of mechanical products. The mechanical_product_structures UoF provides the ability to exchange description of the position of a mechanical product and its arrangement. **mechanical_product_systems:** The mechanical_product_systems UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a mechanical system (see 3.8.104). **mechanical_products:** The mechanical_products UoF specifies the high level concept for defining the type hierarchy and classification of mechanical products (see 3.8.103) in a compatible way to other ship APs. **other_equipments:** The other_equipments UoF specifies the concept for defining the type hierarchy and classification of those equipments (see 3.8.58) which have not been defined in other UoFs. **other_tasks:** The other_tasks UoF specifies the concept for defining the high-level information relating to tasks (see 3.8.155) which have not been defined in other UoFs. **part41_resources:** The part41_resources UoF specifies all the application objects which are in ISO10303-41 and are used by this part of ISO 10303. **part42_resources:** The part42_resources UoF specifies all the application objects which are in ISO10303-42 and are used by this part of ISO 10303. **RAM_characteristics:** The RAM_characteristics UoF specifies the concept for collecting the data and information relating to a mechanical product's RAM characteristics (see 3.8.132). **reciprocating_machineries:** The reciprocating_machineries UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a reciprocating machinery (see 3.8.133). **screw_propellers:** The screw_propellers UoF specifies the concept for associating all the relevant definitions (see 3.8.43) to a screw propellers (see 3.8.136). **ships:** The ships UoF specifies the information required to describe the ship. All ship product data are defined independent of the ship and have a reference to it. The ships UoF describes the essential information to permit that reference. This UoF is common to ship related application protocols. **solid_material_ properties:** The solid_material_properties UoF specifies the material properties and their association with a solid material. **task_definitions:** The task_definitions UoF specifies the high level concept and framework for type hierarchy and grouping of all the data and information which are attributable to tasks (see 3.8.155). **tasks:** The tasks UoF
specifies the concept for defining the high-level information relating to tasks (see 3.8.155). Concepts for relating tasks to each other and identification of major aspects of relationship are also supported by the tasks UoF. **time_and_events:** The time_and_events UoF specifies the concept for describing the events and their authorisation and approval. All the events which take place during the various stages of the ship life cycle are in the scope of the time_and_events UoF Figure L.5 - AP226 Data Planning Model ## Annex M (informative) #### Mechanical System Breakdown Hierarchy #### M.1 Introduction The AP226 scope covers the ship's mechanical systems which include the propulsion system, auxiliary systems and deck machinery. The schematic representation of the scope of AP226 is shown in Figures M.1 and M.2 (not shown). In order to make sure that the full scope of AP226 is covered, physical and life-cycle decomposition techniques were adopted. This annex provides details of the breakdown structure for selected mechanical products. #### M.2 System Breakdown The aim of the system breakdown (decomposition) is to identify all the physical sub-systems and components of a main mechanical product. In effect, it is a hierarchical decomposition which is carried out in a top-down fashion. The decomposition is carried out to the lowest component level for which information is needed to be exchanged. This lowest level is normally defined by exchange scenarios. The breakdown is normally illustrated either by a block diagram or by an indented table, in which each component has been assigned a level to illustrate its position within the hierarchy as well as its parent-child relationship. The breakdown structure for selected mechanical products (diesel engine, propulsor, mechanical transmission systems and manoeuvring system) has been completed and is provided in the following sections: ### M.3 Breakdown Structure for Diesel Engine This has been documented in report TID_PE5220_DD1.0 dated 5 December 1996. *This report will be added here at a later stage.* ## M.4 Breakdown Structure for Propulsor This has been documented in report TID_PE5220_DD1.0 dated 5 December 1996. *This report will be added here at a later stage.* ## M.5 Breakdown Structure for Mechanical Transmission System This has been documented in report TID_PE5220_DD1.0 dated 5 December 1996. *This report will be added here at a later stage*. ## M.6 Breakdown Structure for Manoeuvring System This has been documented in report TID_PE5220_DD_addendum dated 20 February 1997. *This report will be added here at a later stage*. #### Index | \boldsymbol{A} | | |--|--| | AAM | | | AAM (application activity model) | | | abstract test suite | xi, xiii, 5, 157 | | acquisition code | 8 | | activity8, 9, 11, 13, 14, 15, 16, 17, 21, 93, 157, 164, 176, 177, 178, 179, 180, 181, 182, 183, 184, 284 | 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, | | address | | | Address | | | aft | | | AIM | xiii, 5, 17, 156, 159, 160, 161, 162, 276, 277 | | AIM (application interpreted model) | xiii, 5, 17, 156, 157, 159, 160, 161, 162, 276, 277 | | ambient conditions | | | ambient fluid | | | Ambient_condition | | | Analyser | | | Analysis_task | | | anomaly | | | AP | | | AP (application protocol) | xi, xiii, 5, 18, 279 | | applicationx, xi, xii, xiii, 4, 5, 16, 17, 18, 19, 20, 21, | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 43, 53, | | 60, 65, 79, 87, 88, 99, 101, 109, 116, 117, 120, 12
229, 279, 280, 281, 282, 283, 285 | 23, 129, 134, 137, 147, 151, 155, 156, 162, 163, 164, 184, | | | xiii, 5, 17, 164, 184 | | | 5 | | | xiii, 5, 17 | | | 7, 28, 29, 30, 31, 32, 33, 34, 43, 53, 60, 65, 79, 87, 88, 99, | | | 18, 19, 32, 34, 151, 162, 163, 164, 279, 280, 281, 282, 285 | | •• | xiii, 5, 229 | | ** | x, 6, 20, 29, 35, 54, 55, 165, 168, 176 | | 11 | | | - | | | | | | * * | xiii, 5, 229, 281, 283 | | * ** | | | | 5, 9, 17, 39, 62, 63, 114, 115, 154, 166, 181 | | • | 9 | | | 5 | | | 164, 165, 166, 168, 170, 172, 173, 180, 181, 183, 280, 288 | | • | | | • | | | · · · · · · · · · · · · · · · · · · · | 9, 98, 280, 288 | | | 9, 280, 288 | | · · | | | • | 31, 36, 123 | | · | 7, 36 | | * * | 9, 15 | | В | | | Bearing | 25, 36 | | Bedplate | | bilge system......9 | bill of material | | |--|----------------------------------| | boiler | 2, 9, 11, 167 | | Bolt | 25, 37 | | breakdown maintenance | 9 | | breakdown maintenance scheduling | 9 | | c | | | | 0 10 54 55 100 | | CAD | | | CAD drawing | | | cargo handling system | | | cartesian_point | | | Cartesian_point | | | catalogue | | | class | | | classification9, 20, 25, 29, 66, 69, 89, 165, 167, 168, 169, 174, 176, 1 | | | classification society9, 69, 165, 167, 1 | | | Classification Society | | | clutch | | | collection | | | compartment | 28, 120, 165, 174, 177 | | component 2, 9, 13, 14, 25, 38, 39, 40, 55, 95, 96, 99, 111, 115, 127, 139, 1 | 40, 165, 170, 178, 182, 280, 288 | | composition | 15, 125, 129, 151, 154, 282, 285 | | compressed air system | 10, 107 | | compression ratio | | | compressor | | | condition based maintenance | | | condition based maintenance scheduling | | | condition monitoring | | | configuration | | | Configuration_definition | | | configuration_definitions | | | conformance class | | | conformance requirement | | | conformance testing | | | <u>e</u> | | | connecting component | | | Connecting_component | | | connection9, 10, 14, 20, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 38, 39, 55, 56, 9 | 96, 99, 100, 111, 112, 116, 117, | | 139, 140 Connection_characteristic | 26. 39 | | | | | Connection_specification | | | connectivity | | | connector | | | connector component | | | Connector_component | | | context | | | control | | | control and monitoring system | | | control equipment | | | Control_and_monitoring_system | 29, 40 | | Control_equipment | | | cooling water system | xi, 10, 108 | | coordinate system | 120 | | corrective maintenance | | | Coupling | | | Crane21 | | | Crane_ambient_condition | | | Crane_composition | | | Crane design characteristic | 21 42 151 | | Crane_general_characteristic | 21, 43, 44, 151 | |--|---| | Crane_load_characteristic | 21, 44, 151 | | Crane_overall_dimension | 21, 45, 152 | | Crane_stability_data | | | cranes | 3, 44, 45, 158, 283 | | critical failure | 7, 63, 64 | | D | | | datai, x, xi, xiii, 1, 2, 3, 4, 5, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 33, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 67, 68, 70, 71, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 150, 153, 164, 166, 167, 168, 169, 171, 172, 173, 175, 176, 177, 178, 179, 180, 182, 183, 281, 283, 285, 286, data exchange | , 72, 73, 74, 75,
102, 103, 104,
, 124, 125, 126,
, 147, 148, 149,
, 184, 279, 280, | | date6, 46, 59, 74, 104, 105, 114, 147, 148, 155, 156, 159, 160, 161, 162, | | | date_and_time | | | Date_and_time | | | deck machinery | | | decommissioning 2, 70, 700, 701, 705, 707, 705, 772, 773, | | | decomposition hierarchy | | | Definable_object | | | definitionxiii, 1, 2, 18, 20, 26, 27, 28, 37, 46, 58, 71, 74, 93, 98, 110, 115, 119, 120, 122, 14 279, 281, 283 | 18, 169, 173, 177, | | Definition | | | definitionsxiii, 1, 2, 8, 10, 11, 15, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 4 | | | 47, 58, 71, 74, 80, 86, 87, 88, 93, 97, 98, 99, 100, 106, 109, 110, 114, 115, 116, 119, 120 | , 122, 125, 126, | | 129, 144, 145, 148, 151, 156, 157, 164, 165, 173, 279, 281, 283, 284, 285, 286 | | | definitions configuration | | | Density | | | derrick | | | designxiii, 1, 11, 13, 18, 21, 39, 42, 47, 48, 62, 63, 68, 80, 86, 87, 108, 121, 122, 129, 130, 142, 143, 151, 152, 157, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176 180, 181, 182, 183, 279, 280 | | | Design_anomaly | 25, 47 | | Design_characteristic | 26, 47, 80, 86, 152 | | Design_task | | | diesel engine | | | diesel engines | | | diesel power system | | | Diesel_engine | | | Diesel_engine_design_characteristic | | | Diesel_engine_general_characteristic | | | Diesel_engine_operational_characteristic | | | Dilatation | | | Direction | | | disposal | | | document | | | Document | | | Document_reference | | | downstate | | | Drawing_configuration | | | E | | | economiser | 1, 11, 75, 76 | | electric generator | | | electric motor | | |--|------------------------------| | electrical equipment | | | electrical generation. | | | electrical generation system | | | electrical machinery | | | electrical system | | | Electrical_connection | | | Electrical_equipment | | | Electrical system | | | Element_content | • | | Energy_per_mass | | | Engineering_analysis_definition | | | equipment3, 10, 11, 12, 13, 14, 15, 16, 27, 29, 40, 56,
96, 97, 1 176, 180, 280, 282 | | | equipment condition | 11 | | equipment unit | 7 | | Event | 33, 35, 58, 59 | | event and approval data | | | Exhaust_emission | | | external references | xiii | | external_references | 21 | | External_instance_reference | | | External_mechanical_product_definition | | | External_reference | 22, 54, 60, 61 | | External_reference_inside_source | 22, 61 | | F | | | | | | failure7, 10, 11, 12, 17, 58, 61, 62, 63, 64, 65, 66, | | | Failure | | | failure cause | | | failure mode | • | | failure rate | | | Failure_effect | | | fault | | | Fault | | | fault mode | | | field data | | | fluid distributorfluid distributor | | | fluid mover | | | Fluid_operational_data | | | fresh water | | | fuel oil system | | | Function | | | functional | | | Functional | | | functional characteristics | | | functional specifications | | | Functional_characteristic | | | Functional_definition | | | G | | | Gas | 22 26 34 71 72 73 94 151 152 | | gas turbine | | | gas turbine power system | | | Gas_chemical_property | | | gas_material_properties | | | Gas_material_property | | | Gas_physical_propertyGas_physical_property | | | A HIA THEY ALL THE THEORY IV | | | gear | | |---|---| | -
gear box | | | Gear_box | | | general characteristics | 12, 27, 44, 48, 49, 87, 100, 101, 104, 125, 130, 157, 285 | | | | | geometric | | | - | | | _ v | | | | | | _ x _ | | | H | | | | 3 | | | | | Heat_capacity | 24, 74, 75, 94 | | Heat_exchanger | | | Human_resource | | | I | | | ICAM | 18 | | IDEF0 | | | IDEFO | 278 | | implementation method | xi, xiii, 5, 157, 160, 161, 162, 229 | | Inertia | | | | | | | 3, 19, 27, 157, 163 | | | | | | xi, xiii, 1, 5, 19, 156 | | S . | xiii, 5 | | • | | | | 29, 78 | | | 29, 79 | | <i>L</i> | , | | label | 6, 38, 60, 61, 74, 78, 79, 94, 98, 118, 119, 141 | | Label | 30, 79 | | latent fault | | | | 24, 79, 94 | | | | | | 1, 2, 20, 26, 174, 176, 180, 181 | | • | | | | | | | 22, 42, 80, 152 | | | | | | 23, 26, 34, 80, 81, 82, 94, 151, 152 | | - | | | | | | | 23, 81 | | - · · · · · · · · · · · · · · · · · · · | | | | 23, 82 | | | 19, 22, 23, 158, 28 | | | 23, 81, 82, 94, 152 | | | | | • • • • • • • • • • • • • • • • • • • | | | • | | | • | | | • | | | | | | lub oil system | | | lubrication oil | 13, 81, 174 | |--|--| | M | | | machineries | | | <i>Machinery</i> | | | Machinery_ambient_condition | 23, 85, 153 | | Machinery_design_characteristic | 23, 48, 86, 129 | | Machinery_general_characteristic | 23, 87, 125, 153 | | Machinery_operational_characteristic | 23, 52, 88, 133, 153 | | main availability | 8 | | main equipment | | | main function | 9, 13, 15, 16 | | main propulsion system | | | main shaft | 167 | | main system | | | maintainability | | | Maintainability | 31, 88, 123 | | maintainability performance | | | maintenance2, 3, 4, 8, 9, 10, 13, 17, 19, 23, 62, 63, 66, 69, 89, 90, 91, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180 | | | maintenance man-hour | | | maintenance planning | | | maintenance time | | | Maintenance_configuration_data | | | Maintenance_human_resource | | | Maintenance_procedure | | | Maintenance_result | | | Maintenance_schedule | | | Maintenance_spare_part | | | | | | Maintenance_task | | | maintenance_tasks | | | manoeuvring propulsion system | | | manoeuvring system | | | manoeuvring systems | | | Mass | | | Mass_weight_inertia | | | material | | | Material | | | Material_property | | | mean time between failure | | | mean time to failure | | | mean time to repair. | | | <i>Measure_with_unit</i> 24, 47, 53, 57, 75, 77, 79, 93, 94, 95 | | | measure_with_units | | | mechanical component | | | mechanical equipment | | | mechanical machinery | | | mechanical power transmission | | | mechanical product8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 23, 26, 2 | | | 48, 61, 67, 68, 71, 74, 88, 93, 94, 98, 99, 100, 101, 102, 109, 110, 1 122, 123, 126, 127, 136, 139, 141, 143, 148, 157, 281, 282, 283, 284 | | | mechanical systemxi, xiii, 1, 3, 14, 16, 19, 21, 28, 29, 34, 99, 102, 157 | , 164, 174, 177, 280, 282, 284, 285, 288 | | mechanical transmission system | | | Mechanical_component | | | Mechanical_connection | | | Mechanical_equipment | | | mechanical_machineries | | | Mechanical_machinery | | | Mechanical_machinery_composition | 25, 97, 125, 129, 154 | |--|--| | | 25, 98, 154 | | Mechanical_product25, 26, 27, 28, 29, 38, 39 | , 46, 55, 78, 95, 96, 98, 99, 100, 101, 102, 104, 111, 127, 139, | | 151, 152, 153, 154, 155 | | | mechanical_product_anomalies | | | Mechanical_product_component | | | mechanical_product_components | | | Mechanical_product_connection | | | mechanical_product_connections | | | mechanical_product_definitions | | | Mechanical_product_drawing | | | mechanical_product_equipments | | | $Mechanical_product_general_characteristic .$ | 27, 46, 100, 104, 154 | | | | | Mechanical_product_relationship | 29, 78, 99, 101 | | Mechanical_product_representation | | | mechanical_product_representations | | | $Mechanical_product_shape_representation \dots$ | | | | | | | | | | 19, 28, 29, 141, 143, 158, 285 | | — · | 29, 40, 57, 102, 103, 107, 122, 139 | | Mechanical_transmission_system | | | v 1 | | | - · | 23 | | | , 156, 164, 171, 172, 173, 175, 178, 179, 184, 229, 279, 281, 283 | | C . | | | = 1 1 | 27, 40, 44, 56, 79, 85, 87, 97, 98, 104, 106, 112, 113, 130, 154 | | | | | * * | 27, 98, 106, 154 | | MP_piping_system | | | N | | | non oritical failure | 7, 64 | | non-crucai failure | | | 0 | | | onerate | | | • | | | | | | - | | | - | 27, 88, 109 | | • | | | <u> </u> | x, 30, 109 | | ~ | 6 | | | | | • • | | | | | | * * | | | _ | | | | | | • | 27, 45, 101, 110, 126, 134, 154 | | | , | | P | | | partx, xi, xiii, 1, 3, 5, 6, 7, 9, 10, 13, 14, 15, 1 | 6, 20, 21, 26, 28, 30, 31, 32, 42, 46, 60, 78, 79, 98, 99, 102, 119, | | 120, 142, 153, 156, 157, 160, 161, 162, 163 | 3, 164, 165, 167, 168, 169, 171, 172, 182, 184, 229, 279, 281, | | 284, 285 | | | part41 resources | | | F = | 20 30 31 158 285 | | Person | | |---|---| | person_and_organization | 6 | | Person_and_organization | | | physical2, 10, 11, 13, 14, 16, 17, 22, 24, 26, 28, 47, 53, 57, 73, 75, | 77, 79, 82, 93, 94, 95, 110, 113, 124, 128, | | 139, 140, 147, 149, 150, 157, 280, 281, 284, 288 | | | Physical_definition | 27, 46, 74, 93, 110, 119 | | PICS | 5, 6, 18, 157, 162 | | PICS proforma | 5, 157, 162 | | Pipe | 25, 110 | | piping connector | 14, 40, 111 | | piping equipment | 14, 15, 112 | | piping system | xiii, 14, 15, 107, 108 | | Piping_component | | | Piping_connection | | | Piping_equipment | 30, 112, 149 | | Piston | | | placement | | | plan | | | Plane_angle | 24, 94, 113 | | podded drive propulsor | | | port | | | position | | | postprocessor | | | Power | | | power generation | | | power system | 2, 11, 12, 15, 17, 169 | | Power_speed_pitch_point | | | preprocessor | | | Pressure | 24, 94, 113 | | preventive maintenance | | | prime mover | 11, 12, 14, 15, 16, 17, 105, 123, 169, 183 | | process equipment | 15, 113, 114 | | Process_equipment | 30, 75, 113 | | procure | | | productxi, xii, 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, | 21, 25, 26, 27, 28, 29, 31, 32, 34, 37, 38, | | 42, 46, 47, 55, 67, 68, 69, 70, 71, 74, 79, 89, 90, 93, 94, 96, 97, 9 | 98, 99, 100, 101, 102, 109, 110, 111, 114, | | 115, 116, 117, 118, 119, 120, 121, 122, 125, 129, 135, 136, 138, | 139, 143, 148, 151, 152, 153, 154, 155, | | 157, 158, 162, 166, 168, 178, 180, 279, 280, 281, 283, 284, 285, | 288 | | product configuration | | | product connectivity | | | product data | xi, 5, 13, 26, 32, 74, 166, 180, 285 | | product structure | 15, 42, 79, 98, 122, 125, 129, 157 | | Product_anomaly | 25, 46, 47, 68, 114 | | Product_assembly | 28, 114, 115, 154 | | Product_composition | | | Product_connection | 26, 99, 116, 117 | | Product_connectivity | 28, 116, 117, 154 | | Product_context | 20, 117, 154, 155 | | Product_identification | 20, 106, 118 | | Product_material | 27, 101, 119, 155 | | Product_participation | | | Product_placement | | | Product_status | 20, 121, 155 | | Product_structure_definition | 28, 46, 114, 115, 116, 119, 120, 122 | | propeller | 9, 14, 15, 16, 17, 167, 172, 173, 177, 178 | | propertiesxii | | | propulsionxi, 1, 2, 9, 13, 15, 16, 17, 103, | | | propulsion system | | | propulsion systems | | |--|---| | Propulsion_system | | | propulsor | xi, 1, 9, 15, 16, 17, 19, 123, 158, 178, 288 | | protocol implementation conformance statement | | | | | | pump-jet propulsor | | | R | | | RAM | 16, 18, 20, 31, 58, 123, 158, 281, 285 | | | | | | | | Ratio | 24, 94, 124 | | reciprocating machinery | | | reciprocating_machineries | 20, 31, 158, 285 | | Reciprocating_machinery | 31, 48, 124, 125, 126 | | | | | | | | | | | • | 4, 8, 16, 18, 123, 126, 127, 166 | | | 31, 123, 126 | | | 8 | | representationi, xi, xiii, 1, 2, 3, 4, 7, 16, 19, 27, 35 | 5, 37, 38, 39, 41, 74, 75, 100, 102, 110, 112, 128, 130, 134, | | 138, 140, 141, 149, 157, 229, 279, 281, 285, 288 | | | | | | <u> </u> | 25, 127, 135 | | · | 25, 127, 128 | | Rotational_speed | | | S | | | | | | | | | • | | | * * | | | | 32, 128, 129, 130, 132, 133, 134 | | | 32, 128, 129 | | | 32, 129 | | | | | | | | | | | | | | | | | · | | | v | , 19, 21, 28, 34, 47, 56, 57, 77, 78, 97, 112, 113, 117, 118, | | • | 7, 168, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, | | 179, 180, 181, 182, 183, 279, 280, 281, 282, 284 | | | | i, xi, xii, xiii, 1, 19, 28, 32, 120, 135, 136, 279, 280, 281 | | | xi, xiii, 1, 14, 16, 21, 34, 164, 174, 177, 280, 282, 284 | | | | | | | | | 28, 120, 136 | | | | | • | | | | | | | 32, 94, 136, 137 | | | 6 | | | 31, 102, 138 | | | | | - | | | spatial arrangements | | |---|------------------------------------| | Speed | | | steam generation | xi, 9, 16, 103, 139 | | steam generation system | xi, 9, 16, 139 | | steam power system | | | steam turbine | 17, 128 | | Steam_generation_system | | | steering mechanism | | | Stress | 24, 95, 139 | | Structural_connection | | | Structural_connector | | | structure2, 3, 4, 6, 14, 15, 17, 26, 79, 122, 139, 161, 168, 169, 178, 180, | 181, 182, 229, 280, 281, 282, 288 | | supercharger | | | surface characteristics | | | Surface_tension | | | survey | | | survey planning | | | Survey_inspection_task | | | systemxi, 1, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 23, 28, 29, 37, 43, 49, 50, 51, | | | 99, 102, 103, 107, 108, 120, 122, 123, 162, 163, 165, 166, 167, 168, 169, 177, 181, 182, 183, 280, 281, 284, 288 | | | T | | | task11, 17, 20, 21, 23, 30, 32, 33, 35, 48, 69, 77, 89, 91, 92, 93, 98, 99, 109, 146, 148, 153, 157, 158, 164, 165, 169, 171, 174, 175, 176, 177, 178, 179, | | | Task33, 35, 48, 77, 89, 91, 92, 99, 109, | 138, 141, 143, 144, 145, 146, 148 | | Task_approval | | | Task_configuration | | | Task_definition | | | task_definitions | | | Task_other_definition | | | Task_other_resource | | | Task_procedure | | | Task_relationship | | | Task_resource | | | Task_result | | | Task_schedule | | | tasks20, 25, 26, 30, 32, 33, 66, 69, 89, 91, 92, 99, 114, 141, 144, | | | Temperature | | | text3,6,35,37,41,48,51,61,65,73,74,78,80,84,88,94,95,107,109,1 | | | 130, 133, 140, 141, 145, 146, 147, 149, 164 Text | 20 147 | | Thermal_conductivity | | | | | | thruster unit | | | Time | | | time based maintenance | | | time based maintenance scheduling | | | time_and_events | | | Time_period | | | Time_schedule | | | tolerance | | | Tolerance | | | Tool | | | topological | | | Torque | 24, 148, 149 | | Transformer | | | transmission | , 17, 103, 167, 170, 172, 183, 288 | | tunnel thruster | 17 | | turbine | 12, 17, 127, 128 | |--|---| | turbocharger | 11, 17, 49, 52, 128 | | $oldsymbol{U}$ | | | unit of functionality | 6 | | unitsunscheduled maintenance | xi, 2, 3, 17, 18, 19, 20, 46, 47, 165, 178, 283 | | UoFxi, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28 | | | upstate | 8, 12, 16, 17, 36 | | V | | | Valve | | | vector | | | Vector | | | version | | | versions | | | Viscosity | 24, 95, 150 | | W | | | water-jet propulsor | | Filename: n730 Directory: M:\step\parts\part226\current Template: C:\Program Files\Microsoft Office\Templates\Normal.dot Title: ISO/WD 10303 - 226 Subject: Author: Miss Nicole Green Keywords: Comments: Creation Date: 01/21/98 9:26 AM Change Number: 24 Last Saved On: 03/04/98 3:25 PM Last Saved By: TTEZBZ Total Editing Time: 420 Minutes Last Printed On: 06/02/98 9:47 AM As of Last Complete Printing Number of Pages: 313 Number of Words: 74,737 (approx.) Number of Characters: 426,002 (approx.)